Abstract
Most children who follow a typical developmental timeline learn the grammatical categories of words in their native language by the time they enter school. Researchers have worked to provide a number of explicit, testable models or algorithms in an attempt to model this language development. These models or algorithms have met with some varying success in terms of determining grammatical word categories from the transcripts of adult input to children. A new model of grammatical category acquisition involving an application of evolutionary computing algorithms may provide further understanding in this area. This model implements aspects of evolutionary biology, such as variation, adaptive change, self-regulation, and inheritance. The current thesis applies this model to six English language corpora. The model created dictionaries based on the words in each corpus and matched the words with their grammatical tags. The dictionaries evolved over 5,000 generations. Four different mutation rates were used in creating offspring dictionaries. The accuracy achieved by the model in correctly matching words with tags reached 90%. Considering this success, further research involving an evolutionary model appears warranted.
Degree
MS
College and Department
David O. McKay School of Education; Communication Disorders
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Young, Teresa, "A Model of Children's Acquisition of Grammatical Word Categories Using an Adaptation and Selection Algorithm" (2014). Theses and Dissertations. 4148.
https://scholarsarchive.byu.edu/etd/4148
Date Submitted
2014-07-01
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd7148
Keywords
grammatical word categories, evolutionary programming, language acquisition
Language
English