"Membrane-Based Protein Preconcentration Microfluidic Devices" by Yi Li

Abstract

Interest in microchip capillary electrophoresis (CE) is growing due to the rapid analysis times provided and small sample input requirements. However, higher-concentration samples are typically needed because of the small (~pL) detection volumes in these devices. I have made membrane-based protein preconcentration systems in capillary and microchip designs to increase the detectability of low-concentration biological samples. A photopolymerized ion-permeable membrane interfaced with a microchannel in poly(methyl methacrylate) (PMMA) formed the preconcentrator. When a voltage was applied between the sample reservoir and the ionically conductive membrane in a capillary-based system, R-phycoerythrin was concentrated more than 1,000 fold, as determined by laser-induced fluorescence measurement. An integrated system that combines analyte preconcentration with microchip CE has also been developed using two different fabrication methods: polymerization and solvent bonding. In both approaches, microchannels within the PMMA substrates were interfaced with an ion-permeable hydrogel. When an electrical potential was applied along the channel, greater than 10,000-fold preconcentration was achieved for R-phycoerythrin. Concentrated protein samples were also injected and separated in these integrated microdevices. Membrane-based protein preconcentration devices can significantly increase the concentration range of biological samples that can be analyzed by microchip CE.

Degree

MS

College and Department

Physical and Mathematical Sciences; Chemistry and Biochemistry

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2006-03-16

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd1216

Keywords

Membrane, Microfluidic devices, Protein, Preconcentration, Capillary electrophoresis

Language

English

Share

COinS