This thesis discusses topics relevant to indoor unmanned quadrotor navigation and control. These topics include: quadrotor modeling, sensor modeling, quadrotor parameter estimation, sensor calibration, quadrotor state estimation using onboard sensors, and cooperative GPS navigation. Modeling the quadrotor, sensor modeling, and parameter estimation are essential components for quadrotor navigation and control. This thesis investigates prior work and organizes a wide variety of models and calibration methods that enable indoor unmanned quadrotor flight. Quadrotor parameter estimation using a particle filter is a contribution that extends current research in the area. This contribution is novel in that it applies the particle filter specifically to quadrotor parameter estimation as opposed to quadrotor state estimation. The advantages and disadvantages of such an approach are explained. Quadrotor state estimation using onboard sensors and without the aid of GPS is also discussed, as well as quadrotor pose estimation using the Extended Kalman Filter with an inertial measurement unit and simulated 3D camera updates. This is done using two measurement updates: one from the inertial measurement unit and one from the simulated 3D camera. Finally, we demonstrate that when GPS lock cannot be obtained by an unmanned vehicle individually. A group of cooperative robots with pose estimates to one anther can exploit partial GPS information to improve global position estimates for individuals in the group. This method is advantageous for robots that need to navigate in environments where signals from GPS satellites are partially obscured or jammed.



College and Department

Ira A. Fulton College of Engineering and Technology; Electrical and Computer Engineering



Date Submitted


Document Type





quadrotor, gps denied navigation, parameter estimation