Abstract

Lab-on-a-chip devices, also known as micro total analysis systems (μTAS), are implementations of chemical analysis systems on microchips. These systems can be fabricated using standard thin film processing techniques. Microfluidic and nanofluidic channels are fabricated in this work through sacrificial etching. Microchannels are fabricated utilizing cores made from AZ3330 and SU8 photoresist. Multi-channel electroosmotic (EO) pumps are evaluated and the accompanying channel zeta potentials are calculated. Capillary flow is studied as an effective filling mechanism for nanochannels. Experimental departure from the Washburn model is considered, where capillary flow rates lie within 10% to 70% of theoretical values. Nanochannels are fabricated utilizing cores made from aluminum, germanium, and chromium. Nanochannels are made with 5 μm thick top layers of oxide to prevent dynamic channel deformation. Nanochannel separation schemes are considered, including Ogston sieving, entropic trapping, reptation, electrostatic sieving, and immutable trapping. Immutable trapping is studied through dual-segment nanochannels that capture analytes that are too large to pass from one channel into a second, smaller channel. Polymer nanoparticles, Herpes simplex virus type 1 capsids, and hepatitis B virus capsids are trapped and detected. The signal-to-noise ratio of the fluorescently-detected signal is shown to be greater than 3 for all analyte concentrations considered.

Degree

PhD

College and Department

Ira A. Fulton College of Engineering and Technology; Electrical and Computer Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2010-08-09

Document Type

Dissertation

Handle

http://hdl.lib.byu.edu/1877/etd3909

Keywords

thin film, chemical analysis, micro, fluidics, nanofluidics, electroosmotic pump, nanosieve, sacrificial etching, capillary action, lab-on-a-chip, μTAS, uTAS, TAS

Language

English

Share

COinS