Abstract

The Two-Element In Series (TEIS) and Two-Zone models have been used successfully for over twenty years to model test data for radial flow compressors and pumps. The models can also be used to predict the performance of new machines provided that the model inputs can be accurately specified. Unfortunately, use of the TEIS and Two-Zone models as a predictive tool has been limited because an accurate and broadly applicable method of predicting the modeling parameters, etaA, etaB, chi and d2p does not exist. Empirical models have been developed to predict the TEIS and Two-Zone modeling parameters based on a large database of centrifugal pump and compressor test results. These test data were provided by ConceptsNREC and have been collected over the past 40 years. The database consists of a wide range of machines including some that were designed and tested by ConceptsNREC and others from the open literature. Only cases with a vaneless diffuser or volute have been included in the analysis to avoid any possible impeller-diffuser interactions. From the database, models for all of the TEIS and Two-Zone parameters have been derived using basic regression techniques. Three different models are proposed for each of the two TEIS modeling parameters, etaA and etaB. One model for pumps, another for compressors, and a combined model applicable for all machines is given. For the Two-zone parameters, chi and d2p, a single set of models was developed to represent the design point performance and another showing how chi and d2p vary off-design. The combined models for etaA and EtaB are 30% and 70% more accurate than the current state-of-the-art models, respectively. The new models account for the variance in chi and d2p at off-design flow conditions and further refine the accuracy of the overall prediction by correctly modeling the loss mechanisms in the impeller passage. Validation work has shown that the set of models that predict etaA, etaB, chi and d2p can be solved to consistently produce sensible results and yield a reasonable "blind" prediction of the performance of a wide range of radial compressors and pumps. These models constitute the first broadly applicable method for predicting the required TEIS and Two-Zone variables and are sufficiently accurate to provide initial performance estimates of new impeller designs

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2007-12-03

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd2192

Keywords

TEIS, Two-Zone, turbomachinery, one-dimensional, meanline, compressor, modeling, impeller

Share

COinS