•  
  •  
 

Great Basin Naturalist

Abstract

The exotic shrub Tamarix ramosissima (saltcedar) has replaced the native Populus fremontii (cottonwood) along many streams in southwestern United States. We used a controlled outdoor experiment to examine the influence of river salinity on germination and first year survival of P. fremontii var. wislizenii (Rio Grande cottonwood) and T. ramosissima on freshly deposited alluvial bars. We grew both species from seed in planters of sand subjected to a declining water table and solutions containing 0, 1, 3, and 5 times the concentrations of major ions in the Rio Grande at San Marcia, NM (1.2, 10.0, 25.7 and 37.4 meq 1-1; 0.11, 0.97, 2.37, and 3.45 dS m-1). Germination of P. fremontii declined by 35% with increasing salinity (P = .008). Germination of T. ramosissima was not affected. There were no significant effects of salinity on morality or above- and belowground growth of either species. In laboratory tests the same salinities had no effect on P. fremontii germination. P. fremontii germination is more sensitive to salinity outdoors than in covered petri dishes, probably because water scarcity resulting from eavaportion intensifies the low soil water potential associated with high salinity. River salinity appears to play only a minor role in determining relative numbers of P. fremontii and T. ramosissima seedlings on freshly deposited sandbars. However, over many years salt becomes concentrated on floodplains as a result of evaporation and salt extrusion from saltcedar leaves. T. ramosissima is known to be more tolerant of the resulting extreme salinities than P. fremontii. Therefore, increases in river salinities could indirectly contribute to decline of P. fremontii forests by exacerbating salt accumulation on floodplains.

Share

COinS