Keywords

Self-sensing, vibration, piezoelectric, foam, bushing, nano-composite, self-monitoring

Abstract

Most mechanical systems produce vibrations as an inherent side effect of operation. Though some vibrations are acceptable in operation, others can cause damage or signal a machine’s imminent failure. These vibrations would optimally be monitored in real-time, without human supervision to prevent failure and excessive wear in machinery. This paper explores a new alternative to currently-used machine-monitoring equipment, namely a piezoelectric foam sensor system. These sensors are made of a silicone-based foam embedded with nano- and micro-scale conductive particles. Upon impact, they emit an electric response that is directly correlated with impact energy, with no electrical power input. In the present work, we investigated their utility as self-sensing bushings on machinery. These sensors were found to accurately detect both the amplitude and frequency of typical machine vibrations. The bushings could potentially save time and money over other vibration sensing mechanisms, while simultaneously providing a potential control input that could be utilized for correcting vibrational imbalance.

Original Publication Citation

Evan Bird, Jake Merrell, Brady Anderson, Cory Newton, Parker Rosquist, David Fullwood, Anton Bowden, Matthew Seeley, Vibration monitoring via nano-composite piezoelectric foam bushings, Smart Materials and Structures, 25 (2016), 115013 doi:10.1088/0964-1726/25/11/115013

Document Type

Peer-Reviewed Article

Publication Date

2016-10-07

Permanent URL

http://hdl.lib.byu.edu/1877/3820

Publisher

Smart Materials and Structures

Language

English

College

Ira A. Fulton College of Engineering and Technology

Department

Mechanical Engineering

University Standing at Time of Publication

Full Professor

Share

COinS