Thermocline Bed Properties for Deformation Analysis
Keywords
thermocline, thermal energy storage, concentrating solar power, solar energy
Abstract
Thermocline tanks have been considered as an alternative to traditional two-‐tank molten salt thermal storage in concentrating solar power systems due to their potential for cost reduction. One concern for thermocline usage is thermal ratcheting caused by the internal rock bed deformation during cyclic operation and significant temperature fluctuations. Thermal ratcheting studies have been performed in the literature to identify the possibility of tank rupture. However, these studies numerically modeled the ratcheting behavior utilizing bed properties that have never been measured for the materials used in thermocline storage systems. This work presents triaxial test data quartzite and silica thermocline filler materials to better inform future investigations of thermal ratcheting. Molten salt is replaced with water as the interstitial fluid due to similarity in dimensionless numbers and to accommodate room temperature measurement. Material property data for cohesion, dilatancy angle, internal angle of friction, Young’s Modulus, Poisson’s ratio, and bulk modulus are presented for 0.138-‐0.414 MPa confining pressure. The material properties are then compared to those assumed in the literature to comment on the potential impact of this property data relative to thermal ratcheting.
http://solarenergyengineering.asmedigitalcollection.asme.org/mobile/article.aspx?articleid=1852726
Original Publication Citation
Iverson, B. D., Bauer, S. J., and Flueckiger, S. M., 2014, "Thermocline bed properties for deformation analysis," Journal of Solar Energy Engineering, Vol. 136, pp. 041002. doi: 10.1115/1.4027287
BYU ScholarsArchive Citation
Iverson, Brian D.; Bauer, Stephen J.; and Flueckiger, Scott M., "Thermocline Bed Properties for Deformation Analysis" (2014). Faculty Publications. 1566.
https://scholarsarchive.byu.edu/facpub/1566
Document Type
Peer-Reviewed Article
Publication Date
2014
Permanent URL
http://hdl.lib.byu.edu/1877/3484
Publisher
Journal of Solar Energy Engineering
Language
English
College
Ira A. Fulton College of Engineering and Technology
Department
Mechanical Engineering
Copyright Status
http://solarenergyengineering.asmedigitalcollection.asme.org/mobile/article.aspx?articleid=1852726
Copyright Use Information
http://lib.byu.edu/about/copyright/