Abstract

This thesis presents a thermal gradient gas chromatography (TGGC) system that is implemented on a micro-scale. The GC column is approximately 20 cm long and is fabricated out of silicon with 21 nickel thin-film heaters evenly placed along the length of the column. Computational heat transfer models using ANSYS Mechanical APDL predict heating and cooling rates up to 32,000 deg C/min and 3,600 deg C/min, respectively. These results are verified through testing an experimental silicon channel. A PI controller which uses resistance measurements to calculate thin-film temperature is used for obtaining dynamic thermal gradient control. This controller is shown to possess a characteristic rise time of approximately 0.3 seconds with less than 4% overshoot and precision to within less than a degree. These characteristics present this system as a highly favorable candidate for a micro-GC column with resolution similar to that of conventional GC.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering

Rights

https://lib.byu.edu/about/copyright/

Date Submitted

2018-07-31

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd11912

Keywords

Thermal Gradient Gas Chromatography, Metal Thin-Film, Feedback Control, Microfabrication, Computational Heat Transfer

Language

english

Included in

Engineering Commons

Share

COinS