In order to function, proteins must be folded into their native shape. While this can sometimes occur spontaneously, the process can be hindered by thermodynamic barriers, trapped intermediates, and aggregation prone hydrophobic interactions. Molecular chaperones are proteins that help client proteins or substrates overcome these barriers so that they can be folded properly. One such chaperone is the chaperonin CCT, a large MDa protein made up of 16 paralogous subunits that form a double ring structure. CCT encapsulates its substrates in a central cavity, where they are sequestered and folded, using ATP binding and hydrolysis to drive conformational changes in the CCT-substrate complex. CCT mediates the folding of many substrates involved in a variety of cellular process, including the cytoskeletal proteins actin and tubulin, and the G protein subunit Gabg, which signals downstream of GPCRs in a variety of cellular processes. We showed that CCT is responsible for folding the b-propeller containing proteins, mLST8 and Raptor, which are subunits of the mTOR complexes. The mTOR complexes (mTORC1 and mTORC2) are master regulators of cell growth and survival by controlling processes such as protein synthesis, energy metabolism, cell survival pathways and autophagy. CCT folds mLST8 and Raptor and help them assemble into the mTOR complexes. As a result, CCT is required for functional mTOR signaling. Furthermore, we solved a 4.0 Ǻ resolution structure of mLST8 bound to CCT. Surprisingly, mLST8 is found in the center of the folding cavity, in between the rings, despite previous evidence suggesting that substrates bind only in the apical domains. Given its role in folding and assembling the mTOR complexes, G proteins, and many other proteins involved in cell survival pathways, CCT has been implicated in cancer. CCT upregulation often correlates with a worse prognosis, likely because uncontrolled growth requires increased chaperone capacity. The peptide CT20P has been shown to have cytotoxic effects in cancer cells, likely through its binding to CCT. We characterized CT20P, showing that it binds to CCT and inhibits its substrate-folding functions in cells. We specifically showed that a GFP-CT20P fusion protein inhibited the assembly of two important signaling complexes Gbg and mTORC1. These results show that CT20P is a useful inhibitor for the study of CCT function.



College and Department

Chemistry and Biochemistry



Date Submitted


Document Type





chaperones, CCT, mTOR signaling, G protein signaling, CT20P