Breast Cancer Risk Assessment: Evaluation of Screening Tools for Genetics Referral

Maren Lothyan Zaro, Brigham Young University

Abstract

Purpose: This study assessed effectiveness of five tools recommended by the US Preventive Services Task Force (USPSTF), designed to help primary care clinicians determine which unaffected patients to refer to genetics specialists for breast cancer risk assessment based on concerning family history. Design: This descriptive secondary analysis included 85 women aged 40-74. All participants had a first-degree female relative previously diagnosed with breast cancer who also had uninformative negative BRCA1/2 tests. Methods: Each pedigree was evaluated using the five tools including the Family History Screen-7 (FHS-7), Pedigree Assessment Tool (PAT), Manchester Scoring System, Referral Screening Tool (RST), and Ontario-Family History Assessment Tool (Ontario-FHAT). All five tools were applied to each study participant. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated to describe each tool’s ability to identify women with elevated risk as calculated by the Claus model. Receiver operating curves (ROC) were also plotted. Differences between areas under the curve (AUCs) for all possible pairs of tools were estimated through logistic regression to assess for differences in tool performance. Results: Claus calculations identified 14 women out of 85 whose lifetime risk of breast cancer was elevated at > 15%. Only two tools, the Ontario-FHAT and FHS-7, identified all 14 women with elevated risk, a sensitivity of 100%. The FHS-7 tool flagged all 85 participants, meaning its specificity was zero. The Ontario-FHAT flagged 59 participants as needing referral (specificity 36.2%) and had a negative predictive value (NPV) of 100%, indicating that if a woman was not found to need a referral to a genetics professional, it is likely she did not have an elevated lifetime risk of developing breast cancer. AUC values were not significantly different between tools (all p values > .05), and thus were not helpful in discriminating between the tools. Conclusion: In this population, the Ontario-FHAT out-performed other tools in terms of sensitivity and negative predictive value; however, low specificity and positive predictive value must be balanced against these findings. Thus, the Ontario-FHAT can help determine which women would benefit from referral to a genetics specialist.