Abstract

Artificial intelligence (AI) agents will need to interact with both other AI agents and humans. One way to enable effective interaction is to create models of associates to help to predict the modeled agents' actions, plans, and intentions. If AI agents are able to predict what other agents in their environment will be doing in the future and can understand the intentions of these other agents, the AI agents can use these predictions in their planning, decision-making and assessing their own potential. Prior work [13, 14] introduced the S# algorithm, which is designed as a robust algorithm for many two-player repeated games (RGs) to enable cooperation among players. Because S# generates actions, has (internal) experts that seek to accomplish an internal intent, and associates plans with each expert, it is a useful algorithm for exploring intent, plan, and action in RGs. This thesis presents a graphical Bayesian model for predicting actions, plans, and intents of an S# agent. The same model is also used to predict human action. The actions, plans and intentions associated with each S# expert are (a) identified from the literature and (b) grouped by expert type. The Bayesian model then uses its transition probabilities to predict the action and expert type from observing human or S# play. Two techniques were explored for translating probability distributions into specific predictions: Maximum A Posteriori (MAP) and Aggregation approach. The Bayesian model was evaluated for three RGs (Prisoners Dilemma, Chicken and Alternator) as follows. Prediction accuracy of the model was compared to predictions from machine learning models (J48, Multi layer perceptron and Random Forest) as well as from the fixed strategies presented in [20]. Prediction accuracy was obtained by comparing the model's predictions against the actual player's actions. Accuracy for plan and intent prediction was measured by comparing predictions to the actual plans and intents followed by the S# agent. Since the plans and the intents of human players were not recorded in the dataset, this thesis does not measure the accuracy of the Bayesian model against actual human plans and intents. Results show that the Bayesian model effectively models the actions, plans, and intents of the S# algorithm across the various games. Additionally, the Bayesian model outperforms other methods for predicting human actions. When the games do not allow players to communicate using so-called “cheap talk”, the MAP-based predictions are significantly better than Aggregation-based predictions. There is no significant difference in the performance of MAP-based and Aggregation-based predictions for modeling human behavior when cheaptalk is allowed, except in the game of Chicken.

Degree

MS

College and Department

Physical and Mathematical Sciences

Rights

https://lib.byu.edu/about/copyright/

Date Submitted

2020-09-22

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd11428

Keywords

Repeated games, Bayesian model, Bayes filter, conditional probabilities, S# algorithm, agent modeling

Language

english

Share

COinS