Abstract

Superhydrophobic (SH) surfaces are characterized by their extraordinary water repellent qualities. When water comes in contact with these surfaces, it beads up and rolls around. This phenomenon is due partially to surface chemistry which promotes weak adhesive forces between liquid and solid. However, micro- and nanoscale surface roughness also plays a crucial role by trapping air beneath the liquid, reducing liquid-solid contact. Many advantages of these surfaces have been identified, including drag reduction and self-cleaning properties, and the body of research regarding them has grown rapidly over the past few decades.This thesis is concerned with water droplets impinging superheated, superhydrophobic surfaces. In these scenarios, boiling is common in the droplet, producing vapor bubbles which burst through the droplet lamella and cause a spray of miniscule water particles known as thermal atomization. The work contained in this thesis uses an image processing technique to quantify trends in thermal atomization intensity during droplet impingement scenarios for a range of surface microstructure configurations, superheat temperatures, and Weber numbers.In one study, droplet impingement on a smooth hydrophobic and three post-patterned SH surfaces of similar solid fraction is considered. In general, as pitch (center-to-center distance between posts) increases, atomization intensity decreases. This is attributed to the enhanced ability for vapor escape beneath the droplet that is present for wider pitch surfaces. Atomization intensity increases with increasing Weber number for each of the surfaces considered. Additionally, the Leidenfrost point is found to increase with increasing Weber number and decreasing pitch.Next, thermal atomization on SH surfaces with two distinct microstructure configurations is considered: square posts (which allow vapor escape between structures) and square holes (which block vapor escape). Tests are done for each configuration with varying microstructure height, and structure spacing and solid fraction are held constant. Comparing the two configurations at each structure height and Weber number, the post-patterned surfaces suppress atomization for a large number of scenarios compared to the hole surfaces, supporting the theory that vapor escape through microstructures suppresses atomization. Microstructure height significantly affects trends in atomization intensity with surface temperature and Weber number. The LFP is seen to decrease with increasing height.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2020-01-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd11266

Keywords

superhydrophobic, droplets, impingement, boiling, atomization, heat transfer

Included in

Engineering Commons

Share

COinS