Elemental stoichiometry defines a critical understanding of the relationship between nutrient availability and usage throughout different levels of the biological community. We found there is a link between available phosphorus (P), cellular phosphorus, and nematode development as postulated by the growth rate hypothesis (GRH). I predicted that in a P-poor environment, cellular RNA concentrations would be lower than they are in P-rich environment, and thus the 18s rRNA expression level will have reduced. To most efficiently regulate the uptake of limited P, I predicted that nematodes in P-poor environments would decrease the number of copies of the 18s rRNA gene in their genome. I measured life history traits as well as rRNA gene expression and gene copy number. We found that elemental stoichiometry predicts evolutionary changes consistent with the Growth Rate Hypothesis. We sequenced and assembled a draft genome of P. murrayi. Although we expected to find genes responsible for stress tolerance, we hypothesized that in response to strong selection pressure associated with living in a simplified ecosystem, over time the genome of P. murrayi should have undergone significant decay (gene loss) relative to species in ecosystems structured more strongly by biotic interactions. We found significantly fewer genes in P. murrayi. To compare patterns of gene expression between two highly divergent Antarctic nematode species, we sequenced and assembled the transcriptomes of S. lindsayae and P. murrayi. Under laboratory conditions at 4˚C, S. lindsayae had significantly lower rates of gene expression but expressed a significantly larger number of genes. We speculate that the differences in gene expression are correlated with life history traits (developmental rates) while the differences in the number of genes expressed can be explained by their different genetic systems (S. lindsayae is amphimictic, P. murrayi is parthenogenic) and the soil environments to which they are adapted. Since we previously showed that differences in available P content can influence the evolution of gene expression via gene copy number, and that this ultimately influences growth rate, we wondered how much of this response is driven by genetics versus how strongly these patterns are driven by temperature. To better understand this, we maintained wild type populations of P. murrayi in P-rich and P-poor conditions at 5˚C, 10˚C and 15˚C in the laboratory for over 40 generations and sequenced the transcriptomes prepared from each treatment group. We found that nutrient levels played an important role in gene expression when the temperature is optimal for P. murrayi culturing and that temperature is more important in gene expression when the available P is limited. This work underscores the utility of using principles of elemental stoichiometry coupled with genomic and transcriptomics research tools to make and test predictions about life history evolution. The results of my work also inform inferences about the ways in which nutrient availability also drives the organization of trophic interactions and ultimately ecosystems.



College and Department

Life Sciences; Biology



Date Submitted


Document Type



Antarctic nematodes, Caenorhabditis elegans, genome evolution, growth rate hypothesis, Plectus murrayi, Scottnema lindsayae, transcriptome



Included in

Life Sciences Commons