Plants can be colonized by complex communities of endophytic fungi. This thesis presents two studies, both of which investigate biotic filtering in endophytic fungal communities. Chapter 1. Endophytic fungi can be acquired horizontally via propagules produced in the environment such as in plant litters of various species. Given that litters from different plant species harbor distinct endophytic fungal communities and that endophytic fungi may be dispersal-limited, the structure of the endophytic fungal community of a given plant may be determined by proximity to particular inoculum sources. Community assembly may also be affected by biotic filtering by the plant. Therefore, a plant may be able to select particular fungal taxa from among the available pool. In that case, the structure of the endophytic fungal community in the plant could be somewhat independent of the structure of the inoculum community. We tested the hypothesis that biotic filtering of endophytic fungal communities occurs in Bromus tectorum by exposing it to a variety of inoculum sources including litters from several co-occurring plant species. The inoculum sources differed significantly from each other in the structures of the communities of endophytic fungi they harbored. We characterized the structures of the resulting leaf and root endophytic fungal communities in Bromus tectorum using high-throughput sequencing. All tested inoculum sources successfully produced complex communities of endophytic fungi in Bromus tectorum. There was significantly more variation in the structures of the communities of endophytic fungi among the inoculum sources than in the resultant endophytic fungal communities in the leaves and roots of Bromus tectorum. These results suggest that biotic filtering by Bromus tectorum played a significant role in the assembly of the endophytic fungal communities in tissues of Bromus tectorum. Because endophytic fungi influence plant fitness, it is reasonable to expect there to be selective pressure to develop a uniform, desirable endophytic fungal community even from disparate inoculum sources via a process known as biotic filtering. Chapter 2. Frequently one finds that different plant species harbor communities that are distinct. However, the nature of this interspecific variation is not clear. We characterized the endophytic fungal communities in six plant species from the eastern Great Basin in central Utah. Four of the species are arbuscular mycorrhizal (two in the Poaceae and two in the Asteraceae), while the other two species are nonmycorrhizal (one in the Brassicaceae and one in the Amaranthaceae). Our evidence suggests that both host mycorrhizal status and phylogenic relatedness independently influence endophytic fungal community structure.



College and Department

Life Sciences; Biology



Date Submitted


Document Type





community assembly, biotic filtering, endophytic fungi, mycorrhizal fungi, natural selection, phylogeny



Included in

Biology Commons