Over the past several decades, empirical formulas have been developed and improved to predict liquefaction and lateral spread based on a database of case histories from observed earthquakes, such as Youd et al. (2002) and Rauch and Martin (2000). The 2010 Maule Chile earthquake is unique first of all because it is recent and was not used to develop recent liquefaction and lateral spread evaluation methods, and therefore can be reasonably used to evaluate the effectiveness of such equations. Additionally, the 8.8 magnitude megathrust event fills a significant gap in the databases used to develop these empirical formulas, which tends to under represent large magnitude earthquakes and events which occur along subduction zones. Use of case histories from this event will therefore effectively test the robustness and accuracy of these methods.As a part of this comparison, data will be collected from two piers in Port Coronel, Chile: Lo Rojas or Fisherman's Pier, and el Carbonero. Lo Rojas is a municipally owned pier which failed in the 2010 earthquake. Dr. Kyle Rollins gathered detailed engineering survey data defining lateral spread displacements along this pier in a reconnaissance visit with other GEER investigators after the earthquake. El Carbonero was under construction during the earthquake, but no known lateral displacements were observed. Collaboration with local universities and personnel contributed a great deal of knowledge about the soil profile. In early April 2014, collection of SPT and CPT data began in strategic locations to fill gaps of understanding about the stratigraphy near the two piers. Additional testing will provide necessary information to carry out predictions of displacements using current empirical models, which can then be compared with observed displacements collected after the earthquake. Collected data will also be complied, and this alone will provide useful information as it represents a unique case history for future evaluation.The goals of this study are therefore: (1) Collect data for two piers (Lo Rojas and el Carbonero) in Port Coronel, Chile to provide a useful case history of lateral displacements observed; (2) Conduct a liquefaction and lateral spread analysis to predict displacement of the two piers in question, considering lateral spread and slope stability; (3) Compare predicted values with observed displacements and draw conclusions on the predictive capabilities of analyzed empirical equations for similar earthquakes (4) Make recommendations to improve when possible.



College and Department

Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering



Date Submitted


Document Type





Maule Chile 2010 earthquake, liquefaction, lateral spread