This dissertation presents the creation of slab coupled optical sensors (SCOS) for electric field sensing applications. SCOS devices utilize the benefits of an optical fiber system for high bandwidth and low electromagnetic interference. These sensors are fabricated by means of mode coupling between a small section of D-shaped optical fiber (D-fiber) with a multi-mode electro-optic slab waveguide. Electric field detection is accomplished by monitoring the behavior of the resonances, seen as transmission dips in the D-fiber transmission, as they shift with electric fields. The novelties of SCOS devices include their small compact nature, potential for sensor multiplexing and a dielectric structure allowing low electromagnetic interference. The SCOS developed in this work been used to measure fields as low as 30 V/m with 1 kHz resolution bandwidth and a high degree of linearity. Due to their compact size they are capable of placement within devices to measure interior electric fields immeasurable by other sensors that are either too large for internal placement or disruptive of the internal fields due to metallic structure. Wavelength multiplexing allows multiple sensors to be placed on a single fiber for mapping electric fields at multiple instances. As an extension, SCOS multiplexing allows the potential for 3-d field sensing by use of multiple electro-optic crystals having orthogonal orientations of the electro-optic axis. This work performs a thorough analysis of SCOS design in order to optimize sensor efficiency for its various applications. Furthermore, the straightforward fabrication process for these sensors is outlined for the development of future uses of these sensors.



College and Department

Ira A. Fulton College of Engineering and Technology; Electrical and Computer Engineering



Date Submitted


Document Type





optics, fiber optics, optical fiber sensors, electric field sensors, EOS, D-fiber