Jet grouting was used to strengthen the soft soil surrounding the piles and the pile cap of two full-scale driven pile foundations. Soilcrete columns, created by jet grouting, were placed underneath the pile cap and surrounding the piles of the first foundation. Two rows of soilcrete columns were placed around the perimeter of one-side of the second. All of the jet grouting took place after construction of the pile caps. Laboratory testing of the soilcrete slurry showed the columns as having a design unconfined compressive strength of 550-650 psi, compared with the native soil strength of only 6-8 psi (850-1150 psf). Lateral loading of the pile foundation was then performed on these foundations. The results of this test were compared with a similar test performed on the same foundations under native soil conditions. The total lateral capacity of the pile foundation treated underneath the pile cap was increased by 500 kips, which equals an increase of 175%. The total lateral capacity of the pile foundation treated adjacent to the pile cap was 150%. Results of testing suggest that each of the jet-grout treated zones displaced as a rigid block. A majority of the increased lateral resistance came from the passive soil resistance acting on the face of the blocks and the adhesive soil resistance acting on the sides and bottom of the block as it displaced through the native soil. The remaining soil resistance, not accounted for by the passive and adhesive soil resistance, can potentially be attributed to increased soil pile interaction, which is predicted from the decrease in pile head rotation during loading following soil treatment.



College and Department

Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering



Date Submitted


Document Type





jet grout, soilcrete, bridge, foundation, lateral, resistance, strength, Rankine, passive, earth pressure, adhesion, seismic, retrofit, soil improvement