Wire Electric Discharge Machining (wire-EDM) is a non-traditional machining process. Controlled electric sparks are successively used to vaporize part of a workpiece along a programmed path in order to machine a desired part. Because there is no tool that comes in direct contact with the workpiece, it is possible to machine thin, delicate parts. This thesis was designed to observe and analyze the differences in cutting capabilities for a conventional wire-EDM machine when cutting thin-walled sections from five commonly used metals utilizing a variation of roughing and finishing passes. The five metals that were used in this study are: Aluminum 6061 T6, Yellow Brass SS360, 420 Stainless Steel, D2 Tool Steel at 25 to 30 RC, and D2 Tool Steel at 60 to 65 RC. The thin-walled sections were constrained on each end by the parent material to which they remained attached, and they ranged in thickness from 0.05 millimeters (0.002 inches) increasing incrementally by 0.05 millimeters (0.002 inches) until they reached a thickness of 0.30 millimeters (0.012 inches). A Sodick AQ325L wire-EDM machine was employed to perform the machining. It was observed that differences exist in the capabilities of cutting thin-walled sections from the five different metals. This could be both observed visually through inspection and statistically through the analysis of each data set obtained by measuring the resultant thickness of each section. It was also observed that differences exist for the same material while utilizing the variations of cutting parameters: a roughing with no finishing passes, a roughing with one finishing pass, and a roughing with three finishing passes. Thus both the material properties and the cutting parameters play a significant role in determining the capability of cutting thin-walled sections with a wire-EDM machine.



College and Department

Ira A. Fulton College of Engineering and Technology; Technology



Date Submitted


Document Type





EDM, Wire, wire-EDM, Thin-wall, Wire Electric Discharge Machining, Thin Section, Cutting Small Parts



Technology Emphasis

Manufacturing Systems (MS)