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Abstract

We report the first simulations of nonsolvent-induced phase separation (NIPS)

that predict membrane microstructures with graded asymmetric pore size distribu-

tion. In NIPS, a polymer solution film is immersed in a nonsolvent bath, enriching

the film in nonsolvent, and leading to phase separation that forms a solid polymer-rich

membrane matrix and polymer-poor membrane pores. We demonstrate how mass-

transfer-induced spinodal decomposition, thermal fluctuations, and glass-transition

dynamics—implemented with mobility contrast between the polymer-rich and polymer-

poor phases—are essential to the formation of asymmetric membrane microstructures.

Specifically, we show that the competition between the propagation of the phase-

separation and glass-transition fronts determines the degree of pore-size asymmetry.
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We also explore the sensitivity of these microstructures to the initial film composition,

and compare their formation in 2D and 3D.

Polymer membranes are essential to water security: they purify our drinking water,

desalinate sea water into potable water, and treat wastewater before its release to the envi-

ronment.1,2 The separation performance of these membranes is largely determined by their

microstructure. An asymmetric microstructure is advantageous for many applications:3 the

smaller pores on the feed-side of the membrane enable separation, while larger pores deeper

into the membrane provide mechanical support with minimal resistance to permeate flow.

Nonsolvent-induced phase separation (NIPS)4,5—also known as “wet-phase inversion” or the

“Loeb-Sourirajan process”6—is a typical way to make asymmetric membranes. In NIPS, a

homogeneous polymer solution is cast into a film and then immersed in a nonsolvent bath.

The exchange of nonsolvent and solvent between the bath and the film enriches the film in

nonsolvent, inducing phase separation of the film to a polymer-rich phase that becomes the

membrane matrix and a polymer-poor phase that becomes the membrane pores.

Selecting process parameters to target specific membrane microstructures is challenging

due to our limited understanding of NIPS; membrane manufacturers rely on heuristics, but

this approach limits the development of more effective membranes. To understand NIPS,

several research groups have modeled the NIPS system with Flory-Huggins thermodynam-

ics coupled to multicomponent transport equations. Numerical techniques used to simulate

NIPS include lattice Boltzmann,7 smoothed particle hydrodynamics,8 and phase-field sim-

ulations.9–12 While these studies have shown mass-transfer-induced phase separation, they

predicted either the unrealistic formation of alternating polymer-rich and polymer-poor lay-

ers aligned with the film-bath interface, or the formation of microstructures with homoge-

neous pore size distributions. To our knowledge, no existing numerical study of NIPS has

shown the formation of graded asymmetric pore size distributions, suggesting that physics

essential to NIPS membrane formation is missing in the existing models. In their numerical

study of membrane formation by thermally-induced phase separation (TIPS), Millett and co-
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workers13 demonstrated the formation of graded asymmetric microstructures by anisotropic

cooling of a homogeneous film into a phase-separated membrane. Based on their TIPS

model and the NIPS studies mentioned above, we hypothesize that in addition to mass-

transfer-induced phase separation, two more mechanisms are essential to the formation of

asymmetric microstructures: thermal fluctuations and structural arrest due to solidification

of the polymer-rich phase. Solidification mechanisms14 in NIPS include crystallization, gela-

tion, and vitrification; we select glassy dynamics for the solidification mechanism in this

study.

We have modified our phase-field model from previous NIPS studies10–12 to incorporate

thermal fluctuations and a glass transition. To focus on these two features, we exclude

hydrodynamics in this study and use a system of diffusion equations to model NIPS. Hy-

drodynamics are discussed further in the Supporting Information. Using R0, the root-mean-

square (RMS) end-to-end distance of a reference polymer with degree of polymerization Nr

as the characteristic length scale, τ , the Rouse time of the reference polymer in a solvent of

viscosity, ηs, as the characteristic time scale, and NrkBT/b
3 as the characteristic chemical

potential scale, we present our model in dimensionless form:

∂φi(r, t)

∂t
=∇ ·

[
p,n∑
j

Mij({φi})∇µj({φi})

]
+ αN−1/4r θi(r, t) (1)

where φp(r, t) and φn(r, t) are the polymer and nonsolvent volume fractions, Mij is the

mobility matrix, µj is the chemical potential of species j, and θi(r, t) are noise terms that

follow fluctuation-dissipation theorem (FDT) statistics,15

〈θi(r, t)〉 = 0 (2a)

〈θi(r, t)θj(r′, t′)〉 = −2∇ · [Mij({φi})∇δ(r − r′)]δ(t− t′). (2b)

The incompressibility assumption implicitly gives the solvent volume fraction, φs = 1−φp−

φn. The noise-scaling factor, α ∈ [0, 1], reduces the strength of the fluctuations in Eq 1

3



for numerical stability, where α = 0 makes the dynamics purely deterministic while α = 1

sets noise strengths consistent with FDT. For all stochastic simulations in this work, we

set α = 0.04; although this value breaks consistency with FDT, we show that α = 0.04 is

large enough to eliminate nonphysical membrane features observed in purely deterministic

simulations. A glass transition is introduced in the model through the use of concentration-

dependent mobilities,

Mpp = φp(1− φp)/η (3a)

Mpn = Mnp = −φpφn/η (3b)

Mnn = φn(1− φn)/η, (3c)

where η is the concentration-dependent local viscosity. We confer glassy dynamics by mod-

eling η as a sigmoidal function of the local polymer volume fraction, φp(r):

η = 1 +
ηp/ηs − 1

1 + exp
(
− 1

w

(
φp(r)− φ∗p

)) (4)

where ηp/ηs represents the pure-component viscosity ratio of the polymer and the solvent

(implicitly assuming ηn = ηs), w controls the width of the sigmoid, and φ∗p represents the

glass-transition concentration. A sigmoid mimics the Vogel-Fulcher-Tamman-Hesse (VFTH)

and Williams-Landel-Ferry (WLF) equations16 with the exponential growth of viscosity,

while bounding its maximum value for computational stability. Setting w = 5× 10−3 ap-

proximates η as a step function, narrow enough such that η = 1 at φp = 0, but wide enough

to avoid computational issues associated with a mathematical discontinuity. This choice

implies that for φp values far enough from φ∗p, η = 1 for φp(r) < φ∗p, while η = ηp/ηs for

φp(r) > φ∗p. Thus, local mobilities are unscaled in non-glassy regions but they are scaled by

ηp/ηs in glassy regions. Setting ηp/ηs = 1 disables the glass transition while ηp/ηs = 1× 104

enables it. The latter value serves as a balance between faithfully representing a physical

glass transition and accessing practical simulation times; we further justify this choice in the
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Supporting Information.

Finally, the chemical potential terms in Eq. 1 are calculated as the functional derivatives

of the system free energy, µi = δF/δφi, where Flory-Huggins-de Gennes thermodynamics

describe the free energy:

F [{φi}] =

∫
dr [f({φi}) + g({φi})] (5a)

f({φi}) =

p,n,s∑
i

φi

Ni

lnφi +
1

2

p,n,s∑
i 6=j

χijφiφj (5b)

g({φi}) =
1

2

[
∇φp ∇φn

]κp + κs κs

κs κn + κs


∇φp

∇φn

. (5c)

Eqs. 5b and 5c represent the bulk and interfacial free energy contributions, respectively.

We set the degree of polymerization of each component as, Np = 20, Nn = Ns = 1, with

the reference, Nr = 20, the interaction parameters as, χpn = 1.048, χps = χns = 0, and the

square-gradient coefficients as, κp = κn = κs = 1.5. We provide further details of our model

and numerical methods in the Supporting Information.

Figure 1 shows the ternary phase diagram for the NIPS system in this work. We set initial

film compositions near the critical point based on our findings that such compositions are

necessary for mass-transfer-induced phase separation.12 The nonsolvent bath composition

was set to nearly pure nonsolvent, leaving only small amounts of polymer and solvent to

avoid the singular composition bounds of the Flory-Huggins functional. We initialized the

top-half of the simulation box as the bath and the bottom-half as the homogeneous film.

No-flux boundary conditions were implemented at the bottom of the film and at the top

of the bath, while periodic boundary conditions were imposed on the lateral sides of the

simulation box. To visualize results, only domains corresponding to the initial homogeneous

film were shown, omitting the nonsolvent bath for clarity. The glass-transition concentration

was set to φ∗p = 0.33, a value close enough to the initial film compositions so that mobility

contrast effects manifest soon after phase separation. In reality, φ∗p is not arbitrary as it
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changes with dope formulation and temperature.17,18 We leave the effects of varying φ∗p to

future work.

Figure 1: Ternary phase diagram for our NIPS system. Each vertex corresponds to pure
polymer (P), pure solvent (S), and pure nonsolvent (N) compositions. The solid blue line
marks the binodal while the dashed blue line marks the spinodal, as calculated with Flory-
Huggins thermodynamics where χpn = 1.048, χps = χns = 0, Np = 20, Nn = Ns = 1.
The dotted blue lines are examples of tie lines. The solid orange line marks the glass
transition concentration, φ∗p = 0.33. Any composition within the shaded orange area is
considered “glassy.” The green circle marks the bath composition, which is almost pure
nonsolvent (φp = 0.02, φn = 0.97). The green star (φp = 0.25, φn = 0.40), green triangle
(φp = 0.20, φn = 0.45), and green square (φp = 0.15, φn = 0.50) mark the initial homogeneous
film compositions used in this study.

Figure 2 illustrates the effects of thermal fluctuations on mass-transfer-driven microstruc-

ture evolution. In the absence of fluctuations (Figure 2a), a pattern of alternating polymer-

rich and polymer-poor layers forms parallel to the film-bath interface, consistent with other

numerical studies of NIPS.8,12 We attribute the propagation of the ordered pattern to surface-

directed spinodal decomposition (SDSD).19 In contrast, enabling fluctuations (Figure 2b)

introduces disorder to the dynamics, disrupting the propagation of this ordered pattern

with more isotropic bulk spinodal decomposition. The two rows of polymer-poor circles at

t = 1× 103, manifest the competition between the order imposed by SDSD and the disorder

due to thermal fluctuations. Morphologies at later times show that deeper into the film, the

influence of SDSD wanes and bulk spinodal decomposition dominates. As shown, setting
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α = 0.04 is enough to break the ordered pattern, but the effects of stronger fluctuations,

including phase separation by nucleation, remain unexplored; we leave this complexity to

future work.

(a)

(b)

Figure 2: NIPS simulations (a) without (α = 0) and (b) with (α = 0.04) thermal fluctuations.
Each box shown is 256R0×512R0. The y-coordinate corresponds to film depth, where y = 0
is the film-bath interface and y = 512 is the bottom of the film. The bath is not visualized
for clarity. Polymer-rich regions are light green and polymer-poor regions are dark blue,
color bar included for φp. Initial film composition is (φp = 0.25, φn = 0.40), corresponding
to the green star in Figure 1. No glass transition effects are introduced, i.e., ηp/ηs = 1 for
both (a) and (b).

Figure 3 shows the effects of the glass transition on the 2D microstructure. In the

absence of a glass transition (Figure 3a), the progress of microstructure formation varies

with film depth at early times (first three frames). A phase-separation front due to SDSD

follows nonsolvent diffusion into the film. Just above the phase-separation front, domain

sizes increase towards the film-bath interface; but far enough from the front, domain sizes

become more homogeneous, a profile that eventually manifests through the whole film at late

times (last two frames). We attribute these observations to domain coarsening. In a bulk

quench of a system that coarsens only by diffusion, the characteristic domain size, L, follows
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the Lifshitz-Slyozov-Wagner20,21 scaling law, L ∼ t1/3. Assuming that a similar power law

applies to mass-transfer-induced phase separation, i.e., the coarsening mechanisms involved

do not change the exponent, we posit that for phase-separated domains,

L(t, y) ∼ (t− tp(y))1/3, (6)

where tp(y) is the time when the phase-separation front arrived at film depth, y. Eq 6 offers

a crude rationalization for our simulations since phase-separated domains in 2D span several

values of y; nevertheless, it proves useful for the discussion. For domains just above the

phase-separation front, the quantity (t − tp(y)) increases away from the front, consistent

with the observed domain-size profile. However, for domains far enough from the phase-

separation front, we can approximate (t − tp(y)) ≈ t, implying L is no longer a function

of film depth for these mature domains. The same approximation applies to all values of

y, long after the phase separation front has reached the bottom of the film, explaining the

symmetric pore-size distribution at late times. We discuss the computation of the average

domain size for each y-slice in the Supporting Information.

In contrast, the glass transition dramatically changes the microstructure (Figure 3b).

To begin, a polymer-rich skin forms at the film-bath interface. Thermal fluctuations in-

troduce perforations on the polymer-rich skin before it turns glassy. Due to the imposed

mobility contrast, the glassy skin then acts as a barrier to nonsolvent entry, only allowing

the nonsolvent to penetrate the film through the perforations, consistent with the proposed

mechanism by Smolders and co-workers.22–24 The perforations grow deeper into the film,

forming finger-like structures that eventually become a network of pores—a stark contrast

from the closed-pore morphology formed without the glass transition. Though similar in

appearance, these “finger-like structures” are distinct from macrovoids25,26 that span the

thickness of a membrane; we make no claims about macrovoid formation in this work.

In addition to the qualitative change in morphology, the glass transition also leads to a
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positive pore-size gradient from the film-bath interface to the glass-transition front, evidenced

by the positive slope of the film-depth vs. domain-size curve from y = 0 to the orange glass-

transition line. The mechanism responsible for this pore-size gradient is the increasing lead of

the phase-separation front over the glass-transition front. We plot the propagation dynamics

of these two fronts in the Supporting Information. Domain features above the glass-transition

front are frozen while those below it are free to evolve. Following the same assumptions made

for Eq 6, we posit that for domains above the glass-transition front:

L(y) ∼ (tg(y)− tp(y))1/3, (7)

where tg(y) and tp(y) are the times when the glass-transition and phase-separation fronts

arrived at film depth, y, respectively. Again, Eq 7 offers a crude rationalization for our simu-

lations, but it proves useful for the discussion. Since the phase-separation front moves faster

than the glass-transition front, the quantity (tg(y)− tp(y)) increases with film depth, leading

to the asymmetric pore-size distribution. This proposed mechanism is not unfounded; using

in-situ experiments, McHugh and co-workers27 correlated the transition from a macrovoid

morphology to a sponge microstructure with changes to the propagation dynamics of these

two fronts, demonstrating their importance to shaping membrane morphology.

While Figure 3 shows microstructures with a continuous polymer-rich phase, Figure 4

demonstrates that less polymer content in the initial film can lead to an inversion of the

continuous phase to polymer-poor. In the absence of a glass transition (Figure 3a vs. Fig-

ure 4a), the inversion itself does not change the propagation kinetics of the phase-separation

front; the front in Figure 4a has a slight lead in penetrating the film only because its initial

film composition is closer to the binodal, allowing nonsolvent entry to induce phase sepa-

ration earlier. On the other hand, the inversion alters front-propagation dynamics in the

presence of a glass transition (Figure 3b vs. Figure 4b). Since the polymer-poor phase is

continuous in Figure 4b, nonsolvent can penetrate the film without having to form finger-like

9



Figure 3: NIPS simulations in 2D and their domain size profiles (a) without and (b) with glass
transition effects for the initial film composition of (φp = 0.20, φn = 0.45), corresponding
to the green triangle in Figure 1. Mobility contrasts set at (a) ηp/ηs = 1, (b) ηp/ηs = 104.
Each density plot shown is 512R0 × 512R0. The y-coordinate corresponds to film depth,
where y = 0 is the film-bath interface and y = 512 is the bottom of the film. The bath is
not visualized for clarity. Polymer-rich regions are light green and polymer-poor regions are
dark blue, φp color bar included in Figure 2. The orange line (glass-transition front) in the
domain size profile for (b) corresponds to the deepest point in the film where at least one
grid point has crossed the glass transition concentration, φ∗p.
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structures, allowing both the phase-separation and glass-transition fronts to propagate more

quickly. However, this speed-up unevenly favors the glass-transition front, effectively reduc-

ing (tg(y)− tp(y)) for frozen domains. As a consequence, the domain-size gradient from the

film-bath interface to the glass-transition front becomes less pronounced in Figure 4b than

it was for Figure 3b.

The dynamics of membrane formation also change in 3D, owing to the greater tendency

of domains to stay continuous after phase separation. Figure 5 shows the 3D equivalent

of Figure 3b. The finger-like structures in 2D translate to a 3D pore network that allows

the nonsolvent to penetrate the film faster in 3D. The bicontinuous microstructure in 3D

leads to speed-ups for both the phase-separation and glass-transition fronts. Again, the

speed-up unevenly favors the latter—especially for deeper points in the film—leading to a

less-pronounced gradient in domain size for the 3D microstructure.

Similar effects of bicontinuity are shown in Figure 6, the 3D equivalent of Figure 4b.

The discrete polymer-rich phase in the 2D morphology translates to a mostly continuous

structure in 3D. Despite the continuous polymer-rich phase, the higher dimensionality still

leads to speed-ups for both the phase-separation and glass-transition fronts. The domain-

size gradient in 3D is again less-pronounced due to the larger speed-up of the glass-transition

front.

Despite the bicontinuity of both 3D morphologies (Figure 5 vs. Figure 6), initial film com-

position remains important to the propagation of the phase-separation and glass-transition

fronts. Less polymer content in the initial film leads to less resistance to mass-transfer,

evidenced by faster propagation of both fronts in Figure 6. However, the faster advance of

both fronts also leads to less pronounced domain-size asymmetry, as demonstrated by the

decreased slope in the film-depth vs. domain-size curve in Figure 6.

While the asymmetric structures observed here in both 2D and 3D are in qualitative

agreement with experiments,28,29 we do not attempt quantitative comparisons. Instead,

our focus was on gaining a mechanistic understanding of NIPS by building a model step-
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Figure 4: NIPS simulations in 2D and their domain size profiles (a) without and (b) with glass
transition effects for the initial film composition of (φp = 0.15, φn = 0.50), corresponding
to the green square in Figure 1. Mobility contrasts set at (a) ηp/ηs = 1, (b) ηp/ηs = 104.
Each density plot shown is 512R0 × 512R0. The y-coordinate corresponds to film depth,
where y = 0 is the film-bath interface and y = 512 is the bottom of the film. The bath is
not visualized for clarity. Polymer-rich regions are light green and polymer-poor regions are
dark blue, φp color bar included in Figure 2. The orange line (glass-transition front) in the
domain size profile for (b) corresponds to the deepest point in the film where at least one
grid point has crossed the glass transition concentration, φ∗p.
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Figure 5: NIPS simulation in 3D and its domain size profile for the initial film composition
of (φp = 0.20, φn = 0.45), corresponding to the green triangle in Figure 1. Mobility contrast
set at ηp/ηs = 104. Each density plot shown is 64R0 × 256R0 × 64R0. The y-coordinate
corresponds to film depth, where y = 0 is the film-bath interface and y = 256 is the bottom
of the film. The bath is not visualized for clarity. Polymer-rich regions are opaque red,
polymer-poor regions are translucent blue, and the isosurface is opaque beige. The orange
line (glass-transition front) in the domain size profile corresponds to the deepest point in the
film where at least one grid point has crossed the glass transition concentration, φ∗p.
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Figure 6: NIPS simulation in 3D and its domain size profile for the initial film composition
of (φp = 0.15, φn = 0.50), corresponding to the green square in Figure 1. Mobility contrast
set at ηp/ηs = 104. Each density plot shown is 64R0 × 256R0 × 64R0. The y-coordinate
corresponds to film depth, where y = 0 is the film-bath interface and y = 256 is the bottom
of the film. The bath is not visualized for clarity. Polymer-rich regions are opaque red,
polymer-poor regions are translucent blue, and the isosurface is opaque beige. The orange
line (glass-transition front) in the domain size profile corresponds to the deepest point in the
film where at least one grid point has crossed the glass transition concentration, φ∗p.
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by-step, adding complexity in each step and considering its role in membrane formation.

We demonstrated that mass-transfer-induced phase separation, thermal fluctuations, and a

structural arrest mechanism are necessary and sufficient to form graded asymmetric pore-

size distributions. However, other complexities in experiments remain unexplored, notably

hydrodynamics. As velocities are scaled by the inverse of mixture viscosity, we assume that

flows in any continuous polymer-rich phase are negligible, due to the high viscosity ratio

in our glassy dynamics model. Evidence for this assumption is provided in the Supporting

Information. Of course, hydrodynamics can prove to be more significant in NIPS operating

regimes where the continuous polymer-rich phase is not subject to early vitrification; such

complexities, including the physical mechanisms behind the formation of macrovoids25,26 and

other membrane morphologies,30,31 are left to future study.

After we submitted this manuscript for publication, we became aware of an article in

press32 that uses a similar NIPS model to our own, but targeted at a specific polymer-

solvent-nonsolvent system.
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Phase-field model and numerical methods

In our previous work,S1 we presented the derivation of the following dimensional multi-

component phase-field model using the Doi-Onuki formalism:S2

∂φi
∂t

+ v ·∇φi =∇ ·
[
p,n∑
j

Mij∇µj

]
(1)

−∇p+∇ ·
[
η(∇v +∇vT )

]
=∇ ·Π (2)

∇ · v = 0 (3)
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where φp and φn are the polymer and nonsolvent volume fractions, respectively, the solvent

volume fraction is implicitly determined from the incompressibility assumption, φs = 1 −

φp − φn, t is time, p is pressure, η is the viscosity, Π is the osmotic stress tensor, and Mij is

the matrix of mobility coefficients:

Mpp =
b2

ηs
φp(1− φp) (4a)

Mpn = Mnp = −b
2

ηs
φpφn (4b)

Mnn =
b2

ηs
φn(1− φn), (4c)

whose definition follows from the assumption of local Rouse-like friction coefficients,

ζi = b−3ζ0φi (5)

where b is the length of a monomer and ζ0 is the Stokes friction coefficient in a dilute solution

of viscosity, ηs:

ζ0 = ηsb. (6)

In this study, in lieu of the constant solvent viscosity in Eq 6, we use the concentration-

dependent mixture viscosity for the Stokes friction:

ζ0 = η(φp)b, (7)

which then leads to the concentration-dependent-viscosity-scaled mobility model:

Mpp =
b2

η(φp)
φp(1− φp) (8a)

Mpn = Mnp = − b2

η(φp)
φpφn (8b)

Mnn =
b2

η(φp)
φn(1− φn). (8c)
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We also add mass and momentum fluctuationsS3,S4 to the dimensional model:

∂φi
∂t

+ v ·∇φi =∇ ·
[
p,n∑
j

Mij∇µj

]
+ αθθi(r, t) (9)

−∇p+∇ ·
[
η(∇v +∇vT )

]
=∇ ·Π + αξξ(r, t), (10)

where αθ and αξ are noise-scaling factors for the mass and momentum fluctuations, θi and

ξ, respectively, that follow fluctuation-dissipation theorem statistics,

〈θi(r, t)〉 = 0 (11a)

〈ξk(r, t)〉 = 0 (11b)

〈θi(r, t)θj(r′, t′)〉 = −2kBT∇ · [Mij(r)∇δ(r − r′)]δ(t− t′) (11c)

〈ξk(r, t)ξl(r′, t′)〉 = −2kBTδkl∇ · [η(r)∇δ(r − r′)]δ(t− t′), (11d)

where the indices i and j refer to species components while k and l refer to dimensional

components. To nondimensionalize our model, we use R0, the root-mean-square (RMS)

end-to-end distance of a reference polymer with degree of polymerization Nr as the charac-

teristic length scale (R0 = bN
1/2
r ), τ , the Rouse time of the reference polymer in a solvent of

viscosity, ηs, as the characteristic time scale (τ = N2
r ηsb

3/kBT ), b2/ηs as the characteristic

mobility scale, NrkBT/b
3 as the characteristic chemical potential scale, and ηs/τ as the char-

acteristic pressure scale; we determined the characteristic scales for the mass and momentum

fluctuations as θc = N
−1/4
r /τ and ξc = kBT/R

5/2Nrb
3/2, respectively, as shown in the next

section. Following nondimensionalization, we end up with the following model where tildes

mark scaled quantities:

∂φi

∂t̃
+ ṽ · ∇̃φi = ∇̃·

[
p,n∑
j

M̃ij∇̃µ̃j

]
+ αθN

−1/4
r θ̃i

(
r̃, t̃
)

(12)

−∇̃p̃+ ∇̃·
[
η̃(∇̃ṽ + ∇̃ṽT )

]
= Nr∇̃·Π̃ + αξN

1/4
r ξ̃

(
r̃, t̃
)

(13)
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where θ̃i and ξ̃ are Gaussian-distributed noise that follow nondimensional fluctuation-dissipation

theorem statistics,

〈θ̃i
(
r̃, t̃
)
〉 = 0 (14a)

〈ξ̃k
(
r̃, t̃
)
〉 = 0 (14b)

〈θ̃i
(
r̃, t̃
)
θ̃j
(
r̃′, t̃′

)
〉 = −2∇̃·

[
M̃ij(r̃)∇̃δ(r̃ − r̃′)

]
δ
(
t̃− t̃′

)
(14c)

〈ξ̃k
(
r̃, t̃
)
ξ̃l
(
r̃′, t̃′

)
〉 = −2δkl∇̃·

[
η̃(r̃)∇̃δ(r̃ − r̃′)

]
δ
(
t̃− t̃′

)
, (14d)

where the indices i and j refer to species components while k and l refer to dimensional

components. For computational efficiency in calculating thermal fluctuations, we allow for

local dependence of M̃ij and η̃ but assume zero gradient:

〈θ̃i
(
r̃, t̃
)
θ̃j
(
r̃′, t̃′

)
〉 ≈ −2M̃ij(r̃)∇̃2δ(r̃ − r̃′)δ

(
t̃− t̃′

)
(15a)

〈ξ̃k
(
r̃, t̃
)
ξ̃l
(
r̃′, t̃′

)
〉 ≈ −2δklη̃(r̃)∇̃2δ(r̃ − r̃′)δ

(
t̃− t̃′

)
. (15b)

For this paper, we limit our scope to diffusion-only dynamics by setting all velocities to

zero, simplifying our nondimensional model to

∂φi

∂t̃
= ∇̃·

[
p,n∑
j

M̃ij∇̃µ̃j

]
+ αN−1/4r θ̃i

(
r̃, t̃
)
, (16)

where the nondimensional mobility matrix is defined as

M̃pp = φp(1− φp)/η̃(φp) (17a)

M̃pn = M̃np = −φpφn/η̃(φp) (17b)

M̃nn = φn(1− φn)/η̃(φp), (17c)

where η̃(φp) = η(φp)/ηs. The noise-scaling factor is simplified to α = αθ due to the absence

of momentum fluctuations in Eq 16. While the Stokes equation (Eq 10) is not needed in this
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limit, the local viscosity, η̃, remains as a factor scaling the mobilities in Eq 17. In the main

manuscript, we report all equations in their nondimensional form, allowing us to drop the

tildes for convenience.

We used a pseudo-spectral method with semi-implicit time-stepping to solve Eq 16. Spa-

tial discretization is set uniformly in each dimension as one discretization point per unit

length, R0, e.g., Lx/Nx = R0, Ly/Ny = R0 for 2D simulations. We used constant time-

stepping with ∆t = 0.001 and α = 0.04. Simulations were carried out using our custom

phase-field software. Our methods paperS1 includes more details of the requisite numerical

techniques.

Derivation of the fluctuations scales

We determined the characteristic scale for mass fluctuations, θc, by nondimensionalizing

Eq 11c using the same characteristic quantities in the preceding section.

〈θi(r, t)θj(r′, t′)〉 = −2kBT∇ · [Mij(r)∇δ(r − r′)]δ(t− t′) (18)

= kBT
b2

ηsR5
0τ

(
−2∇̃·

[
M̃ij(r̃)∇̃δ(r̃ − r̃′)

]
δ
(
t̃− t̃′

))
(19)

=
kBT

N2
r ηsb

3

N
−1/2
r

τ

(
−2∇̃·

[
M̃ij(r̃)∇̃δ(r̃ − r̃′)

]
δ
(
t̃− t̃′

))
(20)

=
N
−1/2
r

τ 2

(
−2∇̃·

[
M̃ij(r̃)∇̃δ(r̃ − r̃′)

]
δ
(
t̃− t̃′

))
(21)

= θ2c〈θ̃i
(
r̃, t̃
)
θ̃j
(
r̃′, t̃′

)
〉. (22)

Thus, we have shown that,

θc =
N
−1/4
r

τ
(23)
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Similarly, we determined the characteristic scale for momentum fluctuations, ξc, by nondi-

mensionalizing Eq 11d using the same characteristic quantities in the preceding section.

〈ξk(r, t)ξl(r′, t′)〉 = −2kBTδkl∇ · [η(r)∇δ(r − r′)]δ(t− t′) (24)

=
kBTηs
R5

0τ

(
−2δkl∇̃·

[
η̃(r̃)∇̃δ(r̃ − r̃′)

]
δ
(
t̃− t̃′

))
(25)

=
(kBT )2

R5
0N

2
r b

3

(
−2δkl∇̃·

[
η̃(r̃)∇̃δ(r̃ − r̃′)

]
δ
(
t̃− t̃′

))
(26)

= ξ2c 〈ξ̃k
(
r̃, t̃
)
ξ̃l
(
r̃′, t̃′

)
〉. (27)

Thus, we have shown that,

ξc =
kBT

R
5/2
0 Nrb3/2

. (28)

Simulation setup

In 2D, we set a simulation box of size, 512R0 × 2048R0 as shown in Figure S1. As we use

Fourier transforms to calculate the spatial derivatives, we set periodic boundary conditions

on all sides of the simulation box. To establish no-flux boundary conditions at the bottom of

the film and at the top of the bath, we initialize the concentrations to be symmetric across

the midpoint, y = 1024. For each vertical half of the simulation box, we set the inner half as

the initial film and the outer half as the nonsolvent bath. In the main manuscript, we showed

only the domains corresponding to the film at the top-half of the simulation box. Pore-size

profiling was also limited to the shown domain. Though we set the initial film composition

to be symmetric along the y-axis, we did not symmetrize the thermal fluctuations, resulting

in the microstructures for the two halves to not be identical, and in fact, they constitute

independent statistical realizations of the film and bath dynamics. Nevertheless, the no-flux

boundary conditions at the bottom of the film and at the top of the bath are satisfied,

as shown in Figure S1. We use the same setup in 3D with a total simulation box size of

64R0 × 512R0 × 64R0.
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Figure S1: NIPS simulations in 2D, showing the entire simulation box, with glass transition
effects (ηp/ηs = 104) for the initial film composition of (φp = 0.20, φn = 0.45), corresponding
to the green triangle in Figure 1. Polymer-rich regions are light green and polymer-poor
regions are dark blue, φp color bar included in Figure 2.
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Pore size analysis

We calculate the polymer structure factor for each lateral slice of the film: for 2D simulations,

these are structure factors of 1D slices along the y-axis; for 3D simulations, the computed

structure factors are 2D slices along the y-axis,

Sp(q, y) =
1

V

∑
r

∑
r′

e−iq·r
[
φp(r + r′, y)φp(r

′, y)− 〈φp〉2
]

(29)

where V is the number of lattice points for that specific y-slice, and r, r′, and q are vectors

in the x− z plane. The second moment of Sp(q, y) for each y-slice,

〈
q2(y)

〉
=

∑
q

(q · q)Sp(q, y)∑
q

Sp(q, y)
, (30)

is used to estimate the characteristic domain size, L, by means of

L(y) =
2π

〈q2(y)〉1/2
. (31)

The approach described above is more robust than the traditional method of calculating

〈q〉 from the 1D histogram of the n-dimensional structure factor Sp(q). The calculated value

of L using the traditional method is highly sensitive to the number of bins used for the

histogram, especially in simulations where the number of lattice points per slice is limited.

Porosity analysis

Figure S2 shows the porosity profiles of the 3D membranes shown in Figures 5 and 6. To

calculate porosity, a threshold was applied to the density fields to make them binary. We

set the threshold arbitrarily to φthreshp = 0.90φ∗p, i.e., any domain where φp < φthreshp was

considered “porous.” Porosity was then calculated as the fraction of porous domains. Using

this metric, the entire film starts as completely porous as nothing hinders the entry of nonsol-
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vent. As NIPS proceeds, the polymer-rich membrane matrix forms, reducing film porosity.

Porosity itself is distinct from pore size; two cross-sections can have the same porosity but

exhibit different characteristic pore sizes. Note that we hold more confidence in our pore

size analysis than our porosity calculations; we found that porosity is relatively sensitive to

the value of φthreshp , especially for the limited lateral dimensions of our simulations.

Choosing the mobility contrast ηp/ηs

As discussed in the main manuscript, we model the viscosity as a sigmoidal function of the

local polymer volume fraction, φp(r):

η = 1 +
ηp/ηs − 1

1 + exp
(
− 1
w

(
φp(r)− φ∗p

)) (32)

where w is the width of the sigmoid, φ∗p is the glass-transition concentration, and ηp/ηs is

the effective contrast in local mobilities between the glassy and non-glassy regions. The

sigmoidal model mimics the exponential growth in the viscosity of polymer solutions as

predicted by the well-known Vogel-Fulcher-Tamman-Hesse (VFTH) and Williams-Landel-

Ferry (WLF) equationsS5 while bounding the maximum η for computational stability. We

need to set ηp/ηs high enough that the sigmoidal model faithfully represents a physical glass

transition. On the other hand, we cannot choose an exceedingly high value for ηp/ηs as it

will slow down microstructure evolution excessively such that we cannot observe physically

meaningful dynamics in accessible simulation times.

Figure S3 shows a bulk spinodal quench in 1D for different values of ηp/ηs. At t = 15.8,

the concentrations are practically identical. However, by t = 102, the polymer-rich phase

concentration for ηp/ηs = 1 has reached equilibrium, crossing the glass transition, φ∗p on

the way. We expect this behavior since setting ηp/ηs = 1 disables the glass transition.

Meanwhile, the polymer-rich phase concentrations for ηp/ηs = 104 and ηp/ηs = 106 are

approaching φ∗p but have not crossed its value, as expected of a physical glass transition.
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(a)

(b)

Figure S2: Porosity profiles for the 3D NIPS simulations shown in (a) Figure 5 and (b) Fig-
ure 6. The orange line reprsents the glass-transition front.
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However, by t = 103, the polymer-rich phase concentration for ηp/ηs = 104 has crossed φ∗p,

and the polymer-rich phase becomes even more enriched by t = 104, although it has still not

reached the equilibrium value. On the other hand, the polymer-rich phase concentration for

ηp/ηs = 106 barely crossed φ∗p even by t = 104.

Based on Figure S3, setting ηp/ηs = 106 would be preferred. In fact, some experimental

studies of membrane formation characterize a gel as a fluid with viscosity, 106 centipoise.S6,S7

However, we see that the polymer-rich phase concentration crossing φ∗p does not qualitatively

change the coarse features of the NIPS microstructures shown in Figures S4 and S5. Choos-

ing ηp/ηs = 106 leads to sharper interfaces for the finger-like structures shown in Figure S4

but doing so significantly slows down microstructure evolution. Meanwhile, we observe no

large-scale morphological differences between the two levels of viscosity contrast in Fig-

ure S5. Thus, we choose to set ηp/ηs = 104, trading fine microstructural features for faster

microstructure evolution for at least one film composition in 2D.
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(a) (b)

(c) (d)

Figure S3: Spinodal quench (φp = 0.20, φn = 0.45) in 1D using the same thermodynamic
parameters in this study for simulations of different mobility contrasts: ηp/ηs = 100 (solid
red line), ηp/ηs = 104 (dashed blue line), ηp/ηs = 106 (dotted green line). The dashed orange
line marks the glass transition concentration, φ∗p. Different panels correspond to different
simulation times, (a) t = 15.8, (b) t = 102, (c) t = 103, (d) t = 104.
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Figure S4: NIPS simulations in 2D and their domain size profiles for the initial film compo-
sition of (φp = 0.20, φn = 0.45), corresponding to the green triangle in Figure 1. Mobility
contrasts set at (a) ηp/ηs = 104, (b) ηp/ηs = 106. Each density plot shown is 512R0×512R0.
The y-coordinate corresponds to film depth, where y = 0 is the film-bath interface and
y = 512 is the bottom of the film. Polymer-rich regions are light green and polymer-poor
regions are dark blue, φp color bar included in Figure 2. The orange line (glass-transition
front) in the domain size profile corresponds to the deepest point in the film where at least
one grid point has crossed the glass transition concentration, φ∗p.
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Figure S5: NIPS simulations in 2D and their domain size profiles for the initial film com-
position of (φp = 0.15, φn = 0.50), corresponding to the green square in Figure 1. Mobility
contrasts set at (a) ηp/ηs = 104, (b) ηp/ηs = 106. Each density plot shown is 512R0×512R0.
The y-coordinate corresponds to film depth, where y = 0 is the film-bath interface and
y = 512 is the bottom of the film. Polymer-rich regions are light green and polymer-poor
regions are dark blue, φp color bar included in Figure 2. The orange line (glass-transition
front) in the domain size profile corresponds to the deepest point in the film where at least
one grid point has crossed the glass transition concentration, φ∗p.
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Formation of the finger-like structures in 2D

We include a close-up view of the formation of the finger-like structures at early times in

Figure S6. These images come from the same simulation as Figure 3b.

0

60y/
R 0

t = 50

0

60y/
R 0

t = 100

0

60y/
R 0

t = 150

0

60y/
R 0

t = 200

0 256 512
x/R0

0

60y/
R 0

t = 250

Figure S6: Formation of finger-like structures at early times in 2D corresponding to the
simulation in Figure 3b. Polymer-rich regions are light green and polymer-poor regions are
dark blue, φp color bar included in Figure 2.

Propagation dynamics of the phase-separation and glass-

transition fronts

We plot the advance of the phase-separation and glass-transition fronts for all the NIPS

simulations with a glass transition included in the main manuscript. We determined the

location of the phase-separation front as the deepest point in the film where the difference

between the maximum and minimum polymer concentrations crosses a heuristic threshold.

In this analysis, we set this threshold at φmaxp −φminp = 0.1. We recorded the glass-transition

front as the deepest point in the film where at least one pixel (or voxel) has crossed the

glass transition concentration, φ∗p. In all figures included, the lead of the phase-separation
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front on the glass-transition front increases with time, allowing for the formation of the

graded asymmetric pore size distributions. In 2D, the phase-separation and glass-transition

fronts travel slower for the dope composition that leads to a polymer-rich matrix, evident in

comparing Figure S7a and Figure S7b. Due to the greater tendency of forming bicontinuous

structures, the composition dependence of the speed of the fronts is reduced in 3D as shown

by comparing Figure S8a and Figure S8b. Overall, both fronts travel faster in 3D than in

2D.

(a) (b)

Figure S7: Propagation dynamics of the phase-separation (blue circles) and glass-transition
(orange squares) fronts into the film for the 2D NIPS simulations shown in (a) Figure 3b
and (b) Figure 4b.
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(a) (b)

Figure S8: Propagation dynamics of the phase-separation (blue circles) and glass-transition
(orange squares) fronts into the film for the 3D NIPS simulations shown in (a) Figure 5 and
(b) Figure 6.
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Phase separation with hydrodynamics

We used a multi-component diffusion model in our treatment of NIPS for this study, ignoring

the role of hydrodynamics. In the solution of the Stokes equation, velocities are scaled by

the inverse of mixture viscosity. Due to the high viscosity contrast (ηp/ηs = 104) applied

for our structural arrest mechanism, we assume that flows in any continuous polymer-rich

phase are negligible, allowing phase separation to proceed only by diffusion. The difference

between the microstructures of Figures S9a and S9b illustrates the effects of interfacially

driven flows on phase separation. In contrast, the microstructures in Figures S10a and S10b

are qualitatively the same, owing to the shutdown of the velocities in the presence of glassy

dynamics.

Of course, hydrodynamics can prove to be more significant for membrane processes oper-

ating in regimes where the continuous polymer-rich phase is not subject to early vitrification.

We leave this and other complexities to future study.
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Figure S9: Bulk phase separation dynamics without a glass transition (ηp/ηs = 1), (a) with-
out and (b) with hydrodynamics. The bulk composition was initialized within the spinodal
at {φp = 0.24, φn = 0.56}. In the density fields, polymer-rich is light green and polymer-
poor is dark blue. In the velocity fields (bottom panel), darker vectors correspond to higher
magnitudes.
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Figure S10: Bulk phase separation dynamics with a glass transition (ηp/ηs = 104), (a) with-
out and (b) with hydrodynamics. The bulk composition was initialized within the spinodal
at {φp = 0.24, φn = 0.56} and the glass-transition concentration set at φ∗p = 0.33. In the
density fields, polymer-rich is light blue and polymer-poor is dark blue. In the velocity fields
(bottom panel), darker vectors correspond to higher magnitudes. The same velocity colorbar
in Figure S9 was used to illustrate the effect of the viscosity contrast to the magnitude of
velocities.
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