Estimates of site potential for Douglas-fir based on site index for several southwestern habitat types

Robert L. Mathiasen
Northern Arizona University, Flagstaff, Arizona

Elizabeth A. Blake
Northern Arizona University, Flagstaff, Arizona

Carleton B. Edminster
Northern Arizona University, School of Forestry, Flagstaff, Arizona

Follow this and additional works at: https://scholarsarchive.byu.edu/gbn

Recommended Citation
Available at: https://scholarsarchive.byu.edu/gbn/vol46/iss2/16

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen amatangelo@byu.edu.
ESTIMATES OF SITE POTENTIAL FOR DOUGLAS-FIR BASED ON SITE INDEX FOR SEVERAL SOUTHWESTERN HABITAT TYPES

Robert L. Mathiasen\(^1\), Elizabeth A. Blake\(^1\), and Carleton B. Edminster\(^2\)

ABSTRACT.—Estimates of site potential for Douglas-fir based on measured site indexes in 450 stands are compared between 10 southwestern habitat types. Significant differences in site potential are found between the habitat types studied.

Site index is currently the most widely used method of evaluating site quality or potential productivity of forest lands in the United States (Jones 1969, Husch et al. 1972, Daubenmire 1976). Site index is based on the average heights of dominant and codominant trees at a specified index age (usually 50 or 100 years). Because stands of the index age are seldom encountered, site index curves are constructed to allow for estimation of site index for stands older or younger than the index age by interpolation between the curves. Site index curves describe the height growth of hypothetical trees of specified site indexes.

The use of habitat types (Daubenmire 1952) to classify forest vegetation is gaining acceptance by land managers and researchers in the western United States (Layser 1974, Pfister 1976, Pfister and Arno 1980). One of the primary uses of habitat types is in timber management. Habitat types are used to compare regeneration success, succession patterns, cutting methods, and timber productivity and to develop guidelines for collecting seed and planting nursery stock (Pfister and Arno 1980).

The use of habitat types to predict forest site productivity potential is proposed by several investigators. Differences in the rate of height growth by habitat type are demonstrated for several tree species (Daubenmire 1961, Deitschman and Greene 1965, Stanek 1966, Stage 1975, Hoffman 1976). Significant differences between site indexes are also shown for habitat types (Stanek 1966, Stage 1975, Hoffman 1976). Pfister et al. (1971, 1977) and Steele et al. (1981) use site index curves and normal yield tables to estimate yield capability for habitat types in Montana and Idaho.

Southwestern forests are becoming more intensively managed for timber production than in the past. However, growth and productivity data are presently limited (Gottfried 1978). Habitat type classifications are recognized for these forests, but little information is available on the timber productivity potential for these habitat types (Moir and Ludwig 1979, Hanks et al. 1983, Alexander et al. 1984). Jones (1974) provides a summary of the silviculture of southwestern mixed conifer forests and emphasizes a need for improving their management based on the application of habitat types or stand types. This study provides additional quantitative data on site potential based on site index measurements for Douglas-fir for several recognized southwestern forest habitat types.

METHODS

Total height and age at diameter breast height were measured for two to six vigorously growing dominant or codominant Douglas-firs in 450 uneven-aged southwestern spruce-fir (31) or mixed conifer (419) stands from 1979 to 1985. Trees with visible signs of abiotic, insect, or disease damage were not selected as site trees in the stands. The following information was recorded for each stand: national forest, location (township, range, and section), elevation (nearest 100 feet), aspect (four cardinal directions), slope (nearest 5%), slope position (flat, bottom, ridge, slope) and

1Northern Arizona University, School of Forestry, Flagstaff, Arizona 86011.
2USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado 80526.
Table 1. Southwestern spruce-fir and mixed conifer habitat types sampled.

<table>
<thead>
<tr>
<th>Spruce-fir Habitat Types</th>
<th>mixed conifer habitat types</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABLA/LIBO: (Abies lasiocarpa/Linnace borealis)</td>
<td>Mixed Conifer Habitat Types</td>
</tr>
<tr>
<td>ABLA/EREX: (Abies lasiocarpa/Erigeron eximius)</td>
<td>PIE/N/SECA: (Picea engelmannii/Senecio cardamine)</td>
</tr>
<tr>
<td></td>
<td>PIE/N/EX: (Picea engelmannii/Erigeron eximius)</td>
</tr>
<tr>
<td></td>
<td>PIPU/EREX: (Picea pungens/Erigeron eximius)</td>
</tr>
<tr>
<td></td>
<td>ABCO/ACGL: (Abies concolor/Acer glabrum)</td>
</tr>
<tr>
<td></td>
<td>ABCO/FEAR: (Abies concolor/Festuca arizonica)</td>
</tr>
<tr>
<td></td>
<td>ABCO/QUGA: (Abies concolor/Pseudotsuga menziesii/Poa fendleriana)</td>
</tr>
<tr>
<td></td>
<td>ABCO/BERE: (Abies concolor/Berberis repens)</td>
</tr>
<tr>
<td></td>
<td>ABCO/EREX: (Abies concolor/Erigeron eximius)</td>
</tr>
</tbody>
</table>

Table 2. Mean Douglas-fir site indexes and standard deviations by habitat type.

<table>
<thead>
<tr>
<th>Habitat type</th>
<th>Number of stands</th>
<th>Mean</th>
<th>Site potential class</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIE/SECA</td>
<td>39</td>
<td>91.3 ± 9.6 A</td>
<td>High</td>
</tr>
<tr>
<td>ABCO/ACGL</td>
<td>69</td>
<td>89.5 ± 11.4 A</td>
<td>High</td>
</tr>
<tr>
<td>ABCO/FEAR</td>
<td>25</td>
<td>87.5 ± 8.2 A</td>
<td>High</td>
</tr>
<tr>
<td>PIPU/EREX</td>
<td>27</td>
<td>82.6 ± 10.2 B</td>
<td>Moderate</td>
</tr>
<tr>
<td>ABCO/EREX</td>
<td>52</td>
<td>81.2 ± 10.6 B</td>
<td>Moderate</td>
</tr>
<tr>
<td>ABCO/QUGA</td>
<td>92</td>
<td>76.9 ± 10.7 B</td>
<td>Moderate</td>
</tr>
<tr>
<td>PIEN/EREX</td>
<td>28</td>
<td>76.2 ± 17.0 B</td>
<td>Moderate</td>
</tr>
<tr>
<td>ABCO/BERE</td>
<td>87</td>
<td>74.5 ± 9.6 B</td>
<td>Moderate</td>
</tr>
<tr>
<td>ABLA/EREX</td>
<td>12</td>
<td>73.6 ± 10.7 BC</td>
<td>Moderate</td>
</tr>
<tr>
<td>ABLA/LIBO</td>
<td>19</td>
<td>67.3 ± 14.4 C</td>
<td>Low</td>
</tr>
<tr>
<td>TOTAL</td>
<td>450</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. One-way ANOVA, p = 0.10, Student-Newman-Kuels. Means followed by different letters are significantly different.

Forest, Arizona; the Carson (49 stands), Gila (9 stands), Lincoln (50 stands), and Santa Fe (58 stands) National Forests, New Mexico; and the San Juan National Forest, Colorado (36 stands).

Site indexes were determined from average height and age data for each stand using the Douglass-fir site index curves developed by Edminster and Jump (1976). Mean site index and standard deviation were calculated for each habitat type. A one-way analysis of variance, with p = 0.10, was used to compare mean site indexes among habitat types. The Student-Newman-Keuls test was applied to the analysis to show where significant differences occurred.

Results

The 10 habitat types are divided into three site potential classes (high, moderate, and low) based on statistically significant differences in mean site indexes (Table 2). The PIE/SECA (mean-91.3), ABCO/ACGL
Mathiasen et al.: Douglas-fir Ecology

April 1986

(89.5), and ABCO/FEAR (87.6) habitat types are classified as high site potential habitat types for Douglas-fir. The ABLA/LIBO (mean-67.7) is classified as the low potential habitat type. The moderate site potential class includes the remaining six habitat types studied with mean site indexes ranging from 82.6 (PIPU-EREK) to 73.6 (ABLA/EREK). Mean site indexes for the ABLA/EREK and ABLA/LIBO habitat types were not significantly different, but they were classified into different site potential classes because the mean for the ABLA/LIBO habitat type was below 70 feet.

Discussion

Site index is currently the most widely used method of evaluating site quality in the United States (Jones 1969, Husch et al. 1972). Several investigators note significant differences in site index between habitat types for several tree species (Stanek 1966, Roe 1967, Hoffman 1976). However, Daubenmire (1961) rejects the use of ponderosa pine site index curves for predicting potential productivity of habitat types in eastern Washington.

Our results indicate that the southwestern spruce-fir and mixed conifer habitat types sampled in this study can be grouped into three significantly different site quality classes for Douglas-fir. Hoffman (1976) also demonstrates significant differences in Douglas-fir site index between three habitat types in central Idaho.

In their descriptions of southwestern spruce-fir and mixed conifer habitat types, Moir and Ludwig (1979) give estimates of site quality for individual tree species for several habitat types. Their estimates are based on site index and height-age data. Our site index data supports Moir and Ludwig’s site quality estimates for Douglas-fir in the PIEN/SECA (high potential), PIEN/EREK and PIPU/EREK (moderate potential) and the ABCO/BERE (usually moderate potential) habitat types. Our data also confirm their suggestion that the ABCO/ACGL habitat type has high Douglas-fir height growth potential.

Moir and Ludwig (1979) interpret heights of 75–100 feet in 100 years (breast height age) for the fastest growing Douglas-firs in the ABCO/QUGA habitat type to represent poor to moderate site quality, whereas we interpret these data as representing moderate to high site quality for the Southwest. Our site index data for this habitat type basically correspond to that of Moir and Ludwig’s, except the range of site indexes is wider in our study.

Moir and Ludwig (1979) do not present Douglas-fir site quality estimates for three of the habitat types sampled in this study. Based on our site index data, site quality for Douglas-fir is moderate for the ABCO/EREK and ABCO/EREK habitat types and high for the ABCO/FEAR habitat type.

Several investigators discuss the difficulties of using site index for estimating site potential in uneven-aged stands (Stage 1963, Jones 1969, Curtis 1976, Daubenmire 1976). Steele et al. (1981, 1983) use site indexes and normal yield tables to estimate productivity potential for habitat types in Montana and Idaho. However, normal yield tables for Douglas-fir in the Southwest are not available, and we do not feel the use of yield tables from other regions would be valid for the Southwest. The development of separate site curves for different habitat types should improve the accuracy of site index as an estimate of site quality. However, this approach may not solve the problems related to using site index in uneven-aged stands such as early suppression of shade tolerant species (Vincent 1961, Curtis 1976). We agree with the suggestion of Steele et al. (1983) that the development and subsequent validation of growth and yield simulation models using growth coefficients based on habitat types (Stage 1973, 1975) will improve productivity estimates for habitat types.

Literature Cited

