New species of *Protocedroxylon* from the Upper Jurassic of British Columbia, Canada

David A. Medlyn
Uinta Basin Education Center, Utah State University, Roosevelt, Utah

William D. Tidwell
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/gbn

Recommended Citation
Available at: https://scholarsarchive.byu.edu/gbn/vol46/iss3/11
NEW SPECIES OF PROTOCEDROXYLON FROM THE UPPER JURASSIC OF BRITISH COLUMBIA, CANADA

David A. Medlyn1 and William D. Tidwell2

ABSTRACT.—Protocedroxylon macgregorii sp. nov., from Jurassic strata of British Columbia, Canada, is the first reported occurrence of this genus in North America. Protocedroxylon macgregorii combines the tracheal pitting of the araucarians with the crossfield pitting of modern genera of the Abietinae. This species is similar to the type species Protocedroxylon araucarioides. They differ in that P. araucarioides has tangential pitting, tracheid septations, and entirely uniseriate rays. These features are lacking in P. macgregorii with the exception of the rays, which are partially biseriate in the latter species. Protocedroxylon macgregorii has traumatic resin canals or cysts that have not been reported in P. araucarioides.

Protocedroxylon was proposed by Gothan (1910) for woods combining characters of abietineous and araucarian conifers. The type species Protocedroxylon araucarioides Gothan (1910) was described from Upper Jurassic strata near Emarks Glacier of Spitzbergen. Tracheal pitting of P. araucarioides is considered araucarioid, whereas its crossfield pitting is typically abietineous. Hence, the generic epithet of the type species refers to its abietineous characters, and the specific epithet implies araucarian affinities.

Specimens of the petrified wood in this report were collected by D. C. McGregor of the Geological Survey of Canada from the northwest shoulder of an unnamed mountain situated about 2.5 km east of Elbow Mountain (across Graveyard Creek). The locality is at about 51°39’ N Latitude and 123°5’ W Longitude. The age is considered Lower Portlandian (Upper Jurassic) based upon the ammonite Buchia mosquensis, which occurs at several levels within the unit (Jeletzky and Tipper 1967). The largest specimen of fossil wood measures approximately 15 cm long and 10 cm in diameter and consists of mature secondary xylem only. This specimen falls within the general parameters of Protocedroxylon as defined by Gothan (1910). Since it differs from other species of this genus, it is proposed as a new species.

SYSTEMATICS
Coniferales
Protopinaceae
Protocedroxylon Gothan
Protocedroxylon macgregorii sp. nov.

Figs. 1–12

DIAGNOSIS.—Growth rings distinct, 19–70 tracheids wide, transition from early to late wood gradual, occasionally abrupt; late wood tracheids radially flattened with narrow elliptic lumens and walls 5–7 μm thick, early wood tracheids large, angular, with walls 4–7 μm thick, lumens large, 50–85 μm in radial diameter; traumatic resin canals occasionally present having 6–12 thick walled and pitted epithelial cells, horizontal resin canals absent; rays uniseriate, frequently partially biseriate, occasionally entirely biseriate, never multiseriate, 1–40 cells high (commonly 12–25); individual ray cells round to elliptical, largest cells 17–25 μm wide, 25–30 μm high; tracheal pitting variable, 1–4 seriate; early wood tracheal pitting typically multiseriate, alternate and tightly appressed (araucarioid), rarely opposite or in stellate pit clusters; late wood pitting mostly uniseriate, separate or contiguous; pit borders 17–25 μm in diameter with rounded apertures; tangential pits and wood parenchyma absent; rays homogenous, ray parenchyma highly resinous, horizontal and tangential walls pitted, end walls slightly to

1 Uinta Basin Education Center, Utah State University, Roosevelt, Utah 84066.
2 Department of Botany and Range Science, Brigham Young University, Provo, Utah 84602.
acutely oblique, crossfields with 1–3 circular, thinly bordered pits (7–10 μm), pit borders 2 μm wide, with rounded to elliptic lumens, the cross-field pits tend to be horizontally aligned.

Holotype: Geological Survey Canada Collection No. 6776.

Paratype: Brigham Young University 5027.

Etymology: This species is named for its collector D. C. McGregor.

Discussion

Since Gothan (1910) described the genus Protocedroxylon, the history of this taxon has become rather complex. Metacedroxylon was proposed by Holden (1913) to replace Protocedroxylon Gothan on the basis that the latter name implies an abietineous affinity. She further concluded that because Metacedroxylon lacked "bars of Sanio" and possessed araucarioid pitting, it could be none other than an araucarian conifer. In the early 1900s many workers, including Gerry (1910), Holden (1913), and Stopes (1916), debated the diagnostic value of bars or rims of Sanio (crassulae). The presence of crassulae was said to indicate possible abietineous relationships, and the absence of crassulae suggested araucarian affinities. Holden (1913) maintained that presence or absence of crassulae was the only sure criterion for diagnosing fossil conifers. This theory was later investigated by Bailey (1933), who concluded that, although crassulae do not occur in the wood of extant Araucariaceae, it is fallacious to assume that these structures would be preserved under all conditions of fossilization.

Metacedroxylon araucarioides (Gothan) Holden and M. latiporosum Holden were described by Holden (1913) from the Upper Jurassic of the Yorkshire Coast of England. Holden (1915) later reported M. scoticum from the Jurassic Corallian beds of the Sutherland Coast of Scotland. Seward (1919) subsequently pointed out the invalidity of Holden's name and combined Metacedroxylon with Protocedroxylon.

Stopes (1916) not only questioned the use of Metacedroxylon but also Protocedroxylon and Cedroxylon Kraus (1872), believing them to be "taxonomic misfits." She further added that it is not justifiable to assume an affinity of fossil genera, whose fructifications are unknown, to living genera. Therefore, to her, Gothan's use of the names Protocedroxylon and Cedroxylon and Holden's use of Metacedroxylon all seemed inappropriate. Stopes (1916) then proposed a new genus, Planoxyylon, in which the principal characters are similar to Gothan's genus Protocedroxylon. She assigned two species to her new genus: Planoxyylon hectori Stopes from the Cretaceous of New Zealand and Planoxyylon lindleii (Whitham) Stopes. The latter species was first described by Whitham (1833) as Puce lindleii and, since that time, has been shuffled from genus to genus. Stopes (1916) removed P. lindleii from Araucariocylon Kraus, where it was previously classified by Seward (1904). This species has since been placed in Protocedroxylon Gothan by Eckhold (1922), Protocedroxylon Gothan by Edwards (1925), Planoxyylon Knowton by Read (1932), Desoxyylon Endl. by Shimakura (1936), and Yorkoxyylon Vogellehner by Vogellehner (1968).

Shilkina and Khudayverdiyev (1971) followed Krausel (1949) and concluded that Planoxyylon should be separated from Protocedroxylon based upon a difference in their tracheal pitting. Nishida and Nishida (1984) retained Planoxyylon for fossil conifer woods having typical araucarian pitting and vertical pairs of pits in the crossfield.

Comparisons

Protocedroxylon has been reported from strata of Middle Jurassic to upper Lower Cretaceous age (Gothan 1910, Seward 1919, Negri 1914, Vogellehner 1968). Protocedroxylon araucarioides has been reported from Mesoc...
Protoceadoxylon transiens (Gothan) Shikina and Khudayberdyyev (= Cedroxylon transiens Gothan) is similar to P. araucarioides. Terminal parenchyma and stellate pit clusters are the only specific differences between P. transiens and P. araucarioides. Gothan (1907, 1910) cited two occurrences of the former species, one from the Lower Cretaceous of King Charles Land and the other from the Upper Jurassic or Lower Cretaceous of Spitzbergen.

Protoceadoxylon macgregorii sp. nov. from the Upper Jurassic of British Columbia is the first report of this genus from North America. Protoceadoxylon macgregorii is placed in Protoceadoxylon Gothan on the basis of a predomination of araucarioid tracheal pitting coupled with pitted horizontal and tangential walls of the rays. A combination of the foregoing characters is unique to this genus and the araucarioid type tracheal pitting excludes P. macgregorii from either Araucariopitys Jeffrey (1907) or Cedroxylon Kraus (1872). The absence of normally formed resin canals precludes the possibility of close affinities to Prototrioxylon Gothan.

Protoceadoxylon macgregorii is remarkably similar to P. araucarioides but differs from it primarily in the absence of tangential pitting, the presence of traumatic resin canals or cysts, the marked absence of tracheid septations (a feature notably present in Gothan's figured specimen, PI.5, Fig. 4 [1910]), and occurrence of partially biseriate vascular rays in P. macgregorii. The rays of P. araucarioides are always uniseriate. The tracheal pitting of both P. transiens and P. araucarioides is similar to that of P. macgregorii. However, the presence of stellate pit clusters in P. macgregorii makes it more closely allied with P. transiens, although differing from the latter by not having terminal parenchyma. Protoceadoxylon macgregorii differs additionally from both P. transiens and P. araucarioides in having occasional quadraseriate rows of appressed pits.Yorkoxylon lindleyanum (Whitham) Volgellehner is very similar to P. macgregorii, but the height of the vascular rays (1–12 cells), the presence of wood parenchyma (Holden 1914), and the absence of stellate pit clusters in the former are notable differences. Protoceadoxylon hectori (Stopes) is similar to our species; however, the presence of terminal parenchyma in P. hectori and the height of the vascular rays separate them. Protoceadoxylon scoticum (Holden) Seward (1919), with its predominance of uniseriate pitting, is distinct from P. macgregorii. Protoceadoxylon paro nai Negri, from the Cretaceous of North Africa, is not well preserved and therefore not adequately described. A comparison of P. macgregorii with P. paronai would be inconclusive.

Protoceadoxylon macgregorii is similar to several Protoceadoxylon species from Japan. This species differs from P. japonicum Nishida (1967) from the Cretaceous of Choshi by the latter species having septate tracheids and lower rays (1–4, rarely 6 cells high). Protoceadoxylon okafujii Nishida and Oishi (1982) from the Triassic of Yamaguchi prefecture can be distinguished from P. macgregorii by having abundant wood parenchyma in increments and septate tracheids. Also from the same strata as P. okafujii are specimens of P. mineense (Ogura) Nishida and Oishi. Originally reported as Araucarioxylon mineense Ogura (1960), this species was subsequently placed in Protoceadoxylon by Nishida and Oishi (1982). They further included P. triassicum Yamazaki and Tsunada (1981, Yamazaki et al. 1980) in this species. Protoceadoxylon macgregorii is separated from P. mineense by the tangential pitting and septate tracheids in the latter and the presence of triseriate pitting.
and stellate pit clusters in the former. *Protopcedroxylon yezoense* Nishida and Nishida from the Cretaceous Upper Yezo Group, Hokkaido differs from *P. macgregori* in that *P. yezoense* has septate tracheids, typically uniseriate pitting, the presence of wood paraphyema, and lower rays (1–25 cells high) that do not occur in *P. macgregori*.

Protopcedroxylon macgregori and *Protopiceoxylon canadense* Medlyn and Tidwell (1979), are presently the only species of petrified conifer wood of Jurassic age reported from British Columbia. Additional studies of fossil woods, as well as compression materials from this area, will be necessary before the nature and composition of the Jurassic forest of this region can be fully understood.

ACKNOWLEDGMENTS

We express appreciation to Dr. S. R. Ash of the Department of Geology, Weber State College, Ogden, Utah, for reviewing this paper. We also appreciate the critical comments of Dr. E. M. V. Nambudiri, who examined the specimens. Thanks are also due to Dr. Brian Norford of the ISP, Calgary, Alberta, for sending us the specimens from which *Protopcedroxylon macgregori* was described. Partial financial support for this study is also acknowledged from the Society of Sigma Xi and Brigham Young University Research Grant 115-22-053.

LITERATURE CITED

Whitham, H. 1833. The internal structure of fossil vegetables, accompanied by representations of their internal structure, as seen through the microscope. Blackwood, Edinburgh.
