A new species of Plecia from the Green River Formation and new combinations of fossil Bibionidae (Diptera)

Scott J. Fitzgerald
Colorado State University, Fort Collins

Follow this and additional works at: https://scholarsarchive.byu.edu/gbn

Recommended Citation
Available at: https://scholarsarchive.byu.edu/gbn/vol59/iss2/10

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
A NEW SPECIES OF PLECIA FROM THE GREEN RIVER FORMATION AND NEW COMBINATIONS OF FOSSIL BIBIONIDAE (DIPTERA)

Scott J. Fitzgerald

ABSTRACT.—Plecia akerionana, n. sp., is described from the Green River Formation, Colorado, and diagnosed with P. minutula Rice, P. myersi Peterson, and P. rhodopterina Cockerell. Plecia intermedia (Scudder), the genotype of Myctoptaenus, and Plecia creedensis James are transferred to the genus Penthetria, and Hesperillus immutabilis Melander is transferred to Plecia.

Key words: Diptera, Bibionidae, fossil, Plecia, new species, Green River Formation.

Over 20 fossil species in 5 genera of Bibionidae have been described from the shales of Florissant, Colorado (Oligocene), while only 4 species, all belonging to the genus Plecia, have been described from the Green River Formation, Colorado/Wyoming/Utah (Eocene). Although there are few bibionid species known from the Green River Formation, they are among the more abundant Diptera, as was found in a survey of several sites in the Parachute Creek Member of the Green River Formation (Codington 1993) in which Bibionidae represented 22% of Diptera specimens. One Green River site (site F-1, Wyoming) is particularly rich in bibionid specimens, with 80–96% of all insects representing Plecia pealei Scudder (Scudder 1890, Grande 1984).

This study describes an additional species of Plecia from the Green River Formation, Colorado, and reassesses generic assignments of several other fossil bibionids described from Colorado.

Morphology follows McAlpine (1981). Measurements were made with an ocular micrometer. Wings were illustrated with the aid of a camera lucida. The following individuals made materials available for study: Philip Perkins and Michael Kelley, Museum of Comparative Zoology, Harvard University (MCZC); Virginia Scott (entomology) and Peter Robinson (paleontology), University of Colorado, Boulder (UCMC); Conrad Labandeira and Mark Florence, National Museum of Natural History, Smithsonian Institution (USNM). Specimens have been deposited at these institutions.

Genus Plecia Wiedemann

Plecia akerionana Fitzgerald, new species
(Figs. 1–3)

HOLOTYPE.—♀, USA: COLORADO: Rio Blanco County, 4 mi W Rio Blanco, Bob Hammon (USNM #498201).

ETYMOLOGY.—The specific epithet is derived from the Greek akerios (lifeless) and nan (dwarf).

DISCUSSION.—Plecia akerionana was collected from the upper Parachute Creek member of the Green River Formation (Lake Uinta Locality U-2 [of Grande 1984]) and is estimated to be 45–47 million yr old (Dayvault et al. 1995).

DIAGNOSIS.—Plecia akerionana can be distinguished from most other North American fossil Plecia by its minute size and is most similar in size to P. rhodopterina Cockerell (Green River Formation, Colorado, Eocene), P. myersi Peterson (Canadian amber, Cretaceous), and P. minutula Rice (British Columbia, Eocene). Table 1 provides wing measurements for comparison of the 4 smallest (based on wing length) species of Nearctic Plecia. Plecia akerionana is most similar to P. myersi but can be distinguished by the longer and relatively narrower
TABLE 1. Comparison of wing measurements of the 4 smallest Nearctic fossil Plecia species (P. minutula Rice, P. rhodopterina Cockerell, P. akerionana, n. sp., and P. myersi Peterson) using methods of Rice (1959) and Melander (1949); measurements of P. minutula and P. myersi are taken from Rice (1959) and Peterson (1975), respectively. Wing measurements in mm.

<table>
<thead>
<tr>
<th></th>
<th>minutula</th>
<th>rhodopterina</th>
<th>akerionana</th>
<th>myersi</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL</td>
<td>5.3</td>
<td>5.00</td>
<td>3.47</td>
<td>2.70</td>
</tr>
<tr>
<td>WW</td>
<td>2.2</td>
<td>2.16</td>
<td>1.32</td>
<td>1.20</td>
</tr>
<tr>
<td>RL</td>
<td>3.1</td>
<td>3.12</td>
<td>2.45</td>
<td>1.92</td>
</tr>
<tr>
<td>AxC</td>
<td>0.63</td>
<td>0.62</td>
<td>0.36</td>
<td>0.35</td>
</tr>
<tr>
<td>R3+4</td>
<td>1.0</td>
<td>0.84</td>
<td>0.38</td>
<td>0.35</td>
</tr>
<tr>
<td>R5</td>
<td>1.8</td>
<td>1.64</td>
<td>0.99</td>
<td>0.50</td>
</tr>
<tr>
<td>SC</td>
<td>0.38</td>
<td>0.34</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>RF</td>
<td>1.4</td>
<td>1.54</td>
<td>1.40</td>
<td>1.07</td>
</tr>
<tr>
<td>RAx</td>
<td>0.9</td>
<td>0.86</td>
<td>0.57</td>
<td>0.47</td>
</tr>
<tr>
<td>MC</td>
<td>0.35</td>
<td>0.20</td>
<td>0.15</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Melander (1949)b | * | * | * | * |
A-B | * | * | 0.57 | 0.47 |
A-C | * | 1.92 | 1.32 | 1.10 |
A-E | * | 1.54 | 1.40 | 1.07 |
A-L | * | 3.20 | 2.39 | 1.57 |
B-G | * | * | 0.17 | 0.22 |
B-J | * | 0.22 | 0.15 | 0.07 |
C-D | * | 0.40 | 0.34 | 0.20 |
C-F | * | 1.36 | 1.20 | 0.90 |
C-P | * | 0.22 | 0.23 | 0.17 |
D-F | * | 1.04 | 0.82 | 0.65 |
D-H | * | 0.34 | 0.19 | 0.20 |
E-D | * | 0.84 | 0.38 | 0.30 |
E-F | * | 1.64 | 0.99 | 0.82 |
M-J | * | 0.44 | 0.67 | 0.50 |
M-K | * | 0.76 | 0.88 | 0.75 |
N-O | * | 0.70 | 0.57 | 0.52 |
P-R | * | 0.18 | 0.23 | 0.20 |

*Rkey to wing measurements of Rice (1959): WL = wing length; WW = wing width (at point of Rm crossvein; Rice does not indicate at what point this measurement is taken); RL = length of radial sector; AxC = distance between Rm crossvein and costa; R3+4 = length of R3+4 from fork to tip; R5 = length of R5 from fork to tip; SC = height of submarginal cell at tip of R5; RF = distance between origin of radial sector and its fork; RAx = distance between origin of radial sector and Rm crossvein; MC = height of cell (marginal cell) at point of Rm crossvein.

bFor key to wing measurements see Melander (1949) or Peterson (1975).

wings (Table 1), younger age, and ratio of the Rm crossvein to the pedicel of M1+2 1:1.5 in P. akerionana and 1:3 in P. myersi. However, due to the difference in age, locality, and type of preservation, P. akerionana more likely would be confused with P. rhodopterina, which can be distinguished by the longer, relatively wider wing (Table 1, Fig. 4) and R2+3 straight (Fig. 4) rather than evenly curved (Figs. 2, 3).

The 4 Plecia species known from the Green River Formation are, based on wing length, significantly larger and thus easily distinguished from P. akerionana: P. dejecta Scudder (wing 7.5 mm long × 3.0 mm wide), P. pealei (10.0 mm × 3.5 mm), P. rhodopterina (5.00 mm × 2.16 mm), and P. woodruffi Cockerell (7.0 mm × 2.75 mm).

GENERAL DESCRIPTION.—Compression fossil on pentagonal piece of light gray shale approximately 5 cm × 5 cm and 2.0–5.5 mm thick. Dorsally preserved with wings and legs outstretched (Fig. 1). Reverse not present.

FEMALE.—Head dark brown. Left antenna with at least (basal segments difficult to distinguish) 9 round, compact segments, apical flagellomere small, nipple-like. Anteromedial region of head with 2 faint, segment? light brown structures (likely the labial palpi). Thorax and scutellum light brown. Legs (apex of right mid-femur, tibia, and 5 tarsomeres, apex of right fore femur, tibia, and 4? tarsomeres, apex of left mid-femur and tibia, and apex of left fore femur and tibia) brown with dense, short, dark brown, appressed hair. Apices of
fore tibiae more robust than that of mid-tibiae. Right fore and mid-tibiae with short, slender anteroapical spur. Right mid-basitarsus 0.40 mm long, 5 times as long as wide, tarsomere two 0.17 mm long, tarsomeres three through five 0.50 mm long. Right fore basitarsus 0.54 mm long, 6.75 times as long as wide. Wings (anterobasal portion of left wing and right wing minus most of anal lobe) light brown fumose. Wing tip slightly pointed, without anteroapical emargination. Anterior veins (especially costa, subcosta, radius, radial sector, R₂₊₃, and R₄₊₅) dark brown, posterior veins lighter. Pterostigma absent. Pedicel of
M₁₊₂ 1.5 times as long as Rm crossvein. R₄₊₅ 2.6 times as long as R₂₊₃. R₂₊₃ relatively short and vertical, evenly rounded (Figs. 2, 3). See Table 1 for wing measurements. Abdomen dark brown, posterior end (tergites 8 on) concealed under rock layer. Posterior edge of each tergite with a thin darker brown line marking the division between tergites. Abdomen robust, somewhat swollen in appearance.

MALE.—Unknown.

Plecia immutabilis (Melander) (Fig. 5)

Plecia immutabilis (Melander), new combination.

DISCUSSION.—The family Hesperinidae (or subfamily Hesperini of the Bibionidae depending upon current views of classification; treated here as Hesperinidae) is differentiated in part from the Bibionidae by the antennal flagellomeres slender, elongate, and antenna longer than the thorax (Hardy 1981, Rohdendorf 1991). This differs greatly from the antenna of typical Bibionidae, which have relatively short, stout antenna with compact flagellomeres. Examination of the holotype of H. immutabilis is not particularly helpful as the antennae are not visible, although based on wing venation (R₂₊₃ oblique in relation to R₄₊₅) the specimen clearly belongs to Hesperinus or Plecia (Fig. 4). However, the photograph of paratype #112558 (USNM) of H. immutabilis provided by Melander (1949) reveals that the antenna are of the bibionid and not the hesperinid type. Melander (1949) also treats species of Plecia described by Cockerell as Hesperinus and apparently was not clear on the characters that distinguish these 2 genera. The shape of the antenna and the shorter R₂₊₃, oblique in relation to R₄₊₅, indicate this species belongs to the genus Plecia.

Genus Penthetria Meigen

Mycetophaetus Scudder, 1892: 20. Type species: Mycetophaetus intermedius Scudder, 1892, by monotypy, new synonym.

Penthetria creedensis (James) (Fig. 5)

Penthetria creedensis (James), new combination.

DISCUSSION.—Based on wing venation in the illustration of P. creedensis provided by James (1938: 115, Fig. 2) and examination of paratype #19117 (UCMC), this species belongs to the genus Penthetria. Penthetria can be differentiated from Plecia by R₂₊₃ longer than and nearly parallel to R₄₊₅.

There seems to have been some confusion among early workers in distinguishing Plecia
from Penthetria as Cockerell (1911), discussing the genus Plecia from Florissant, Colorado, states that "the genus is still found in the same region," referring to Penthetria heteroptera Say (extant Nearctic Plecia are found only in semitropical parts of the southeastern United States). Furthermore, historic specimens examined (UCMC), identified by James as "Plecta heteroptera," also represent Penthetria heteroptera.

Penthetria intermedia (Scudder)

Mycetophaeus intermedium Scudder 1892: 20. Synotypes (#3494, 3463; reverse of one another) (MCZC), USA: COLORADO: Florissant.

Plecia intermedia (Scudder) (as treated by Evenhuis 1994).

Penthetria intermedia (Scudder), new combination.

Discussion.—Scudder (1892) erected the monotypic mycetophilid genus *Mycetophaeus* to include the species *intermedius*. Although finding formal synonymy of the genus has been nebulous, various authors have treated *Mycetophaeus* as an extinct genus of Hesperinidae (Rohdendorf 1974), Mycetophilidae (Carpenter 1992), and a junior synonym of *Plecia*, Bibionidae (Evenhuis 1994). Examination of the syntypes of *P. intermedius* and the illustration provided by Scudder (1892: Plate II, Fig. 5) clearly places this species in the bibionid genus *Penthetria*, which is differentiated from *Plecia* by R2+3 longer than and nearly parallel to R4+5 and from Hesperinidae by the short, compact antennal flagellomeres.

Acknowledgments

I sincerely thank Boris C. Kondratieff, Colorado State University, for his generous support of this research and a critical review of the manuscript. I thank Neal Evenhuis, Bishop Museum, for trying to help determine the nomenclatural status of *Mycetophaeus*, and Whitney Cranshaw, Colorado State University, for use of photography equipment. I also thank Bob Hammon, Fruit Research Center, Colorado, for making material available for study, and those listed with respective institutions for loan of type material.

Literature Cited

Received 3 April 1998
Accepted 22 June 1998