4-30-1989

Diatom flora of Mink Creek, Idaho, USA

Christopher T. Robinson
Idaho State University, Pocatello

Samuel R. Rushforth
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/gbn

Recommended Citation
Available at: https://scholarsarchive.byu.edu/gbn/vol49/iss2/2
DIATOM FLORA OF MINK CREEK, IDAHO, USA

Christopher T. Robinson1 and Samuel R. Rushforth2

ABSTRACT.—Diatoms were collected from an open-canopy and closed-canopy site on Mink Creek, Bannock County, Idaho, a third-order Rocky Mountain stream. Ninety diatom taxa were identified. Achnanthes minutissima Kuetz. and Navicula lanceolata (Ag.) Kuetz. dominated the open-canopy site, whereas Cocconeis placentula var. englypta (Ehr.) Cl. comprised greater than 40% of the diatom assemblage at the closed-canopy site. Seven of the 10 most important diatoms were present at both sites. A high degree of similarity was evident between natural and artificial substrates at both sites. Although most taxa were present at both sites, it is apparent from this study that differences in the abundance of taxa occur according to variations in light.

The purpose of this paper is threefold: (1) to provide a description of the diatom assemblage present in an open- and a closed-canopy section of a third-order Rocky Mountain stream, (2) to compare our findings with those of other studies on lotic diatom communities from mountain streams in Idaho, and (3) to compare the colonizing diatom assemblage on natural substrates with that on clay brick artificial substrates.

METHODS

Study Area Description

Mink Creek is a third-order stream located in the Caribou National Forest, Bannock County, Idaho, USA (112°23’ W longitude, 42°48’ N latitude). Diatom samples were collected from the East Fork and the main stem. The East Fork site had a closed canopy with solar radiation reaching the stream bed ranging from 80 to 260 μE m⁻² s⁻¹. The main stem site had an open canopy with solar radiation reaching the stream bed ranging from 310 to 1880 μE m⁻² s⁻¹. Solar radiation was measured with a Lambda light meter (Model LI-185). Stream temperatures at both sites ranged from 8 to 20 °C. Water chemistry was analyzed in the field using a HACH kit. At the time of sampling, pH = 8.9, hardness = 220 mg l⁻¹ (CaCO₃), ortho-phosphate = 1.0–1.7 mg l⁻¹ (PO₄), nitrate = 13–17 mg l⁻¹, and turbidity = 10 FTUs. Additional descriptions of the sites are given by Robinson and Rushforth (1987).

Experimental Methods

Twenty-five half-bricks (4 × 10 × 15 cm) were placed in the stream at each site on 1 July 1983. On 14 November 1983 periphyton was collected in the field by scrubbing a 3.5-cm² area from the top of the half-bricks and natural substrates using a technique derived from Stockner and Armstrong (1971). A 35-ml syringe tube was reduced to 5 cm in length by removing the “needle” end, and a neoprene gasket (made from 0.5-cm wet suit material) was glued to the flared “plunger” end. During sampling, the apparatus was pressed onto the substrate surface with the neoprene gasket, thus creating a seal. Periphyton was then scrubbed into a slurry with a coarse brush. This slurry was pipetted into a storage vial, placed on ice, and returned to the laboratory. Two samples were collected from each substrate, one being analyzed for chlorophyll a and one for diatoms.

Chlorophyll a samples were vacuum filtered (103 kPa) through 2.4-cm Whatman GF/C filters (pore size 0.45 μm) and immediately frozen at −20 °C for analysis later. Chlorophyll a was extracted by grinding the previously frozen filter in 3 ml reagent-grade acetone (100%). The extractant was transferred to a centrifuge tube, filled to 10 ml with acetone, and then refrigerated at 4 °C for 24 hours. Chlorophyll a and phaeopigment concentrations were determined using a Turner model 111 fluorometer by multiplying the fluorescence reading for each sample by a calibration factor derived with a Beckman Instruments

1Department of Biological Sciences, Idaho State University, Pocatello, Idaho 83209.
2Department of Botany and Range Science, Brigham Young University, Provo, Utah 84602.
Table 1. Ten most important diatom taxa, species importance values (FDI), species richness values, and Simpson’s diversity values categorized by site and substrate type. N= number of samples. **Species notation descriptions.

<table>
<thead>
<tr>
<th>Species rating</th>
<th>East bricks</th>
<th>Main bricks</th>
<th>All bricks</th>
<th>East natural</th>
<th>Main natural</th>
<th>All combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 25</td>
<td>N = 23</td>
<td>N = 48</td>
<td>N = 5</td>
<td>N = 2</td>
<td>N = 55</td>
</tr>
<tr>
<td>1</td>
<td>COPE</td>
<td>NALA</td>
<td>COPE</td>
<td>COPE</td>
<td>ACMI</td>
<td>COPE</td>
</tr>
<tr>
<td>2</td>
<td>NALA</td>
<td>ACMI</td>
<td>NALA</td>
<td>ACMI</td>
<td>ACMI</td>
<td>NALA</td>
</tr>
<tr>
<td>3</td>
<td>ACMI</td>
<td>COPE</td>
<td>NALA</td>
<td>ACMI</td>
<td>ACMI</td>
<td>COPE</td>
</tr>
<tr>
<td>4</td>
<td>ACLA</td>
<td>ACLA</td>
<td>NALA</td>
<td>NIDP</td>
<td>NAPA</td>
<td>NAPA</td>
</tr>
<tr>
<td>5</td>
<td>AMPE</td>
<td>AMPE</td>
<td>AMPE</td>
<td>GOOL</td>
<td>NIDP</td>
<td>NIDP</td>
</tr>
<tr>
<td>6</td>
<td>NAPA</td>
<td>ACLA</td>
<td>ACLA</td>
<td>NAPA</td>
<td>NAPA</td>
<td>NAPA</td>
</tr>
<tr>
<td>7</td>
<td>NAPA</td>
<td>NAPA</td>
<td>NAPA</td>
<td>NAPA</td>
<td>NAPA</td>
<td>NAPA</td>
</tr>
<tr>
<td>8</td>
<td>NAPA</td>
<td>NAPA</td>
<td>NAPA</td>
<td>NAPA</td>
<td>NAPA</td>
<td>NAPA</td>
</tr>
<tr>
<td>9</td>
<td>GOOL</td>
<td>ACLA</td>
<td>NAPA</td>
<td>ACLA</td>
<td>NAPA</td>
<td>ACLA</td>
</tr>
<tr>
<td>10</td>
<td>NAPA</td>
<td>GOOL</td>
<td>GOOL</td>
<td>GOOL</td>
<td>GOOL</td>
<td>GOOL</td>
</tr>
</tbody>
</table>

Importance values

- Top species: COPE = 48.4, NAPA = 23.2, GOOL = 35.1
- Top 5 species: COPE = 82.9, NAPA = 81.3, GOOL = 76.6
- Top 10 species: COPE = 92.8, NAPA = 91.3, GOOL = 92.5
- Others: COPE = 9.8, NAPA = 5.4, GOOL = 9.9

Species richness: 20 = 55, 21 = 79, 22 = 90

Simpson’s diversity: 21 = 20, 22 = 24, 23 = 24

**Species notation descriptions:

- COPE: Coccosaucus placental var. englypta (Ehr.) C.L. GOOD
- NAPA: Nacalia aculeata var. aculeata (Kuetz.) GOOL.
- GOOL: Goodea globularis var. englypta (Kuetz.) GOOL.
- NAPA: Nacalia aculeata var. aculeata (Kuetz.) GOOL.
- GOOL: Goodea globularis var. englypta (Kuetz.) GOOL.

RESULTS AND DISCUSSION

Chlorophyll a values ranged from 30 to 113 g/m³. The lower chlorophyll values were found at the East Fork site and can be attributed to low light intensity (Towns 1981). Chlorophyll a values were found to be highly correlated (r = .85) to ash-free dry weights of individual samples. This suggests that chlorophyll values were indicative of algal standing crops in study sections, and that algal material collected was composed primarily of living cells.

The chlorophyll a values found in this study were consistent with values found for the Middle Fork of the Salmon River of Idaho (Cushing et al. 1983). Overall, fewer taxa were found in Mink Creek (third order) than in the Middle Fork of the Salmon River (seventh order). In addition, Cushing and Rushforth (1984) found A. minutissima Kuetz. and C. placental var. englypta (Ehr.) Cl. to be prevalent in the Middle Fork of the Salmon River. Both of these taxa were predominant in Mink Creek. This predominance of small, adnate growth forms found in Mink Creek can be attributed to grazing by invertebrates (Sumner and McIntyre 1982, Gregory 1983, Peterson 1987, Hill and Knight 1988) or frequent physical disturbance (Luttonton and Rada 1986, Robinson and Rushforth 1987).

A total of 90 diatom taxa were identified from Mink Creek. Species richness varied
widely between sites, ranging from 55 taxa at the East Fork to 79 taxa at the main stem (Table 1). Fewer species were found on natural substrates than on the clay half-bricks. The greater number of taxa found on the bricks may simply be an artifact of a difference in sample size (Table 1). The top 10 taxa predominated the system, and 7 of the 10 most important taxa (by FDI) were found in all samples, with the remaining taxa being low in abundance. A complete taxonomic list can be found in Robinson and Rushforth (1987).

Differences also exist within the diatom community between sites. Cocconeis placenta var. euglypta (Ehr.) Cl. comprised over 40% of the community in the East Fork, whereas Navicula lanceolata (Ag.) Kuetz. and Achnanthes minutissima Kuetz. dominated the main stem, with combined relative abundances of greater than 53% (Fig. 1). Simpson’s index (an index of dominance) was greater in the East Fork than in the main stem (Table 1), further emphasizing the predominance of C. placenta var. euglypta (Ehr.) Cl. at the East Fork site. Of interest is the evidence of a high degree of similarity among samples within a site, and the relatively low similarity between sites. Considering all samples, the East Fork had an average of 70.1% within-group similarity. The within-group similarity of the main stem equaled 68.2%, whereas between-group similarity equaled only 35%.

Numerous studies have demonstrated good comparability of manufactured substrates with
natural substrates after a set colonization period (e.g., Tuchman and Blinn 1979, Tuchman and Stevenson 1980, Lamberti and Resh 1985). Our study also displays good comparability of artificial substrates with natural substrates. However, specific site differences were evident, suggesting that diatom studies should be made at the site-specific scale of study to take into account possible differences in physical or chemical properties between sites (see also Clark and Rushforth 1977).

ACKNOWLEDGMENTS

Funding for the project was provided through the Department of Botany and Range Science, Brigham Young University, the Department of Biological Sciences, Idaho State University, and a Sigma Xi Grant-in-Aid of Research. We thank D. M. Anderson, J. R. Barnes, and C. Richards for field and laboratory assistance. We thank G. W. Minshall for reviewing the manuscript.

LITERATURE CITED

