Frequency Response and Gain Enhancement of Solid-State Impact-Ionization Multipliers (SIMs)

Joshua L. Beutler

Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation

https://scholarsarchive.byu.edu/etd/2001

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Frequency Response and Gain Enhancement of Solid-state Impact-ionization Multipliers (SIMs)

Joshua L. Beutler

A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Aaron R. Hawkins, Chair
Gregory P. Nordin
Richard H. Selfridge
Stephen M. Schultz
Robert C. Davis

Department of Electrical and Computer Engineering Brigham Young University April 2010

Copyright © 2010 Joshua L. Beutler All Rights Reserved
ABSTRACT

Frequency Response and Gain Enhancement of Solid-state Impact-ionization Multipliers (SIMs)

Joshua L. Beutler

Department of Electrical and Computer Engineering

Doctor of Philosophy

A study of the frequency response and gain of Solid-state the Impact-ionization Multiplier (SIM). The SIM generates current gain via impact ionization also known as avalanche gain. The SIM provides low noise amplification from an arbitrary current source. In the case of this study, current sources consisted of photodiodes optimized for a particular wavelength of light.

The SIM is fabricated from silicon and enjoys the low noise, low carrier transit time advantages of conventional silicon impact ionization devices while amplifying current from a photodiode of a different material. This is advantageous because ideal detection and multiplication regions cannot always be grown on the same wafer. Furthermore a photodiode fitted to a SIM allows absorption and multiplication regions to be independently optimized.

The SIM exhibits a current dependant input resistance. This resistance in combination with field effects from the SIM collector is the limiting factor in the frequency response of the SIM. Frequency response is improved to the extent that this floating voltage at the input can be minimized.

Higher AC gains are realized in the device with the incorporation of 3-dimensional geometries. These improvements allow for improved device breakdown and reduced space-charge resistance at high input currents.

Frequency response can also be improved by increasing the current flowing into the SIM, this current is most often in the form of DC current such that it can be filtered off at the output and not interfere with the input signal.

Keywords: Joshua L. Beutler, impact ionization, solid-state, multiplication gain, frequency response, avalanche gain, SIM
ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Aaron R. Hawkins, for his support in this project. We have spent many years researching together, and he has been a most helpful mentor and teacher. I have learned tremendously from him. He has been an example of perseverance during difficult times, and an immeasurable help in my education. His work at building up the Integrated Microfabrication Laboratory (IML) and securing funding for its operation is a most impressive achievement. The new lab equipment that he and Dr. Gregory P. Nordin have introduced to the IML has greatly enhanced SIM fabrication techniques.

I would like to thank my committee members, Drs. Nordin, Richard H. Selfridge, Stephen M. Schultz, and Robert C. Davis for their time and attention spent on this work. I have taken classes from each of them, and greatly value the fundamental frameworks they taught which provided a better physical understanding of the world around us. I would particularly like to thank Dr. Nordin for allowing me access to the Chemical Mechanical Polisher and Dr. Selfridge and Dr. Schultz for allowing me use of their variable gain high speed transimpedance amplifier. Access to these resources was fundamental to writing several chapters of this dissertation. Dr. Davis has been most encouraging with his advice and offered a physicist’s view of semiconductor physics which has aided in double checking theories and ideas on this project.

I also thank my research friends and colleagues. Don Dawson and Joe Bussio in the shop have been most helpful and free with their knowledge, time, and expertise. I appreciate Jim Fraser’s excellent work in the cleanroom and have really enjoyed being able to bounce ideas off of him. Michael Johnson has been most helpful with ideas, simulations, and packaging support
on this project. Josh Kvavle was most instrumental in getting me started in research many years ago as well as helping me secure post-graduate employment.

I thank my family: my father who first encouraged me to get a PhD, my mother who always knew I could, and most importantly my wife (who oversaw the complete editing and formatting of this work) and three boys whose cheery smiles and joyous laughter so often lifted my spirits after a long day of work. They have sacrificed with me as I have pursued additional schooling.

I gratefully acknowledge financial support for this research through the Raytheon Ideas Program and from the Defense Advanced Research Projects Agency through grant number NBCHC050160, directed by Raymond Balcerak. Further research has been made possible through funding from the National Science Foundation, Grant ECS-0700820.
TABLE OF CONTENTS

LIST OF TABLES ... xiii

LIST OF FIGURES .. xv

1 INTRODUCTION ... 1
 1.1 Introduction.. 1

2 CURRENT OPTICAL DETECTORS ... 5
 2.1 Introduction.. 5
 2.2 The Photomultiplier Tube ... 5
 2.3 The PIN Photodiode .. 9
 2.4 The Avalanche Photodiode .. 12
 2.5 Single Photon Counting APDs ... 15
 2.6 Limitations of Existing Optical Receivers .. 18
 2.7 The SIM: A Standalone Impact Ionization Amplifier .. 22
 2.8 Dissertation Overview .. 23

3 THEORY OF IMPACT IONIZATION .. 25
 3.1 Introduction.. 25
 3.2 Impact Ionization Gain Mechanism .. 25
 3.3 Ionization Threshold Energy .. 27
 3.4 Ionization Coefficients and Gain Equations ... 30
 3.5 Ionization Coefficient Measurement in Silicon ... 36
 3.6 Impact-Ionization Response Time .. 40
 3.7 Multiplication Noise .. 43
 3.8 Conclusion .. 47

4 FUNDAMENTALS OF THE SIM ... 49
9.2 Future SIM Work .. 165
 9.2.1 Substrate Current Injection ... 165
 9.2.2 Resonant Tunneling Injection ... 167
 9.2.3 Noise and Sensitivity .. 168
9.3 SIM Applications .. 169
9.4 Conclusion 171

10 REFERENCES .. 173

LIST OF PUBLICATIONS ... 178

A APPENDIX A. Fabrication PROCEDURES ... 179
 A.1 SIM Fabrication Procedure for Rectangular Buried Oxide SIMs 179
 A.1.1 Step 1—KOH Etch Mask, and KOH Etching ... 179
 A.1.2 Step 2—Oxide Growth and Diffusion Mask Planarization 181
 A.1.3 Step 3—Diffusion ... 182
 A.1.4 Step 4—Metallization ... 183
 A.2 SIM Fabrication Procedure for Circular Pedestal SIMs ... 184
 A.2.1 Step 1—RIE, ICP Etching ... 184
 A.2.2 Step 2—Oxide Growth and Diffusion Mask Planarization 185
 A.2.3 Step 3—Diffusion ... 186
 A.2.4 Step 4—Metallization ... 187
 A.3 SIM Process Charts ... 189
LIST OF TABLES

Table 2.1: Photomultiplier Tube Materials [1] .. 8

Table 5.1: Comparison of frequency limit of the Schottky contact SIM to that of the pn
junction SIM.. 86
LIST OF FIGURES

Figure 2.1: Illustration of the rudimentary components and electron action within a photomultiplier tube.

Figure 2.2: a) A cross-sectional view of a PIN photodiode where light (hv) induced electron hole pairs are swept from the depletion region due to that presence of a fairly uniform field. b) Electric field magnitude in the PIN plotted against distance (Y) into the PIN.

Figure 2.3: a) A cross-sectional view of a Reach-Through Avalanche Photodiode (APD) where light (hv) induced holes are swept from the depletion region due to the presence of a fairly uniform field. That same field draws electrons into a high field impact-ionization region producing gain. b) Electric field magnitude in the APD plotted against distance (Y).

Figure 3.1: Impact ionization in a high field region where electrons are the principle ionizers.

Figure 3.2: The silicon band structure which illustrates the indirect nature of the valence and conduction bands [2].

Figure 3.3: An ideal slab of semiconductor medium with uniform electric field, a width (W) larger than 1 micron. This slab illustrates the current increases of electrons (Jn) and holes (Jp) as they traverse the impact ionization region.

Figure 3.4: Multiplication gain M versus multiplication length for pure electron injection for various α/β values are used to demonstrate its effect on the avalanche breakdown curve [3].

Figure 3.5: Measurement of pure electron injection and impact ionization in a PIN photodiode to accurately measure ionization coefficients under different fields.

Figure 3.6: These figures illustrate the time difference for a small ionization event to completely traverse the depletion region where a) only electrons cause ionization events and b) where electrons and holes are equally likely to cause ionization events.

Figure 3.7: Avalanche multiplication 3dB frequency response limits due to differences in ionization coefficients of electron and holes [4].

Figure 3.8: Excess noise factor as a function of gain for multiplication regions with varying ratios of ionization coefficients [5].

Figure 3.9: The multiplication region of an I2E avalanche photodiode. By engineering the bandgap across the multiplication, excess noise is deterministically inhibited as secondary holes drift through progressively larger bandgap materials [6].

Figure 4.1: First generation vertical SIM structure. This cross-sectional view of a device shows a P type epitaxial layer on a P+ substrate. The electron collector is the N+ doped region and the hole sink is the P+ doped substrate.
Figure 4.2: Graph showing Isim versus Vsim for a vertical device built using a P type epitaxial layer on a P+ substrate. An illuminated silicon photodiode served to inject current into the SIM. ... 53

Figure 4.3: Representation of a model SIM current versus voltage curve with the 3 regions of interest labeled for discussion. ... 54

Figure 4.4: Representation of carrier action in the SIM when operating in region A. (a) Carrier action and semiconductor depletion in a cross-section of a vertical SIM. (b) Band diagram representation of the metal semiconductor interface and carrier action. 56

Figure 4.5: Representation of carrier action in the SIM when operating in region B. (a) Carrier action and semiconductor depletion in a cross-section of a vertical SIM. (b) Band diagram representation of the metal semiconductor interface and carrier action. 58

Figure 4.6: Representation of carrier action and semiconductor depletion in a cross-section of a vertical SIM when operated in region C. .. 60

Figure 4.7: Circuit model for a SIM connected to a photodiode current source when Vsim is greater than the depletion voltage. I3 represents the impact ionization gain mechanism dependent current source. .. 63

Figure 4.8: Energy band diagram showing the barrier for electrons injected from a metal contact into a SIM built on a P type epitaxial layer. After the P type semiconductor between the metal and N+ semiconductor is completely depleted, raising Vsim by ΔV will lower the barrier Θb1 by ΔΘ as shown. ... 67

Figure 4.9: Electric field versus position in the depleted region between metal-semiconductor contact and electron collector. As Vsim increases, the slope of the electric field (-qNA/εs) remains constant and W decreases. ... 68

Figure 4.10: Rbarrier + Rsc resistance versus input current between the metal-semiconductor and electron collector. The theoretical curve is calculated using (4.13) and (4.14) assuming a vertical SIM device made using a P type epitaxial layer, Schottky injection contact, and a spacing d equal to 4 microns. Measured values correspond to fabricated SIM devices with those parameters... 72

Figure 4.11: Test setup used to measure the frequency response of SIM devices... 74

Figure 4.12: 3dB frequency response versus injected input current. Theoretical values were generated from equation 4.15 and measured values come from measurements on the same SIM device used to generate figure 4.11(P type semiconductor with Schottky injection).. 75

Figure 5.1: Illustration of an ohmic contact. This contact is used on the injection node of the second generation SIM to effectively inject electrons into the semiconductor.................. 78
Figure 5.2: a) Cross section of the SIM showing the geometries and doping. b) Illustration of field profiles in the area of the horizontal cutline shown in figure 5.2a when VSIM is 50 volts and the injected current is 1 uA. c) Illustration of the field profiles for the vertical cutline in figure 5.2a under the same conditions as previously mentioned. Electric field lines were extracted from ATLAS simulations of the structure... 79

Figure 5.3: The difference in the conduction band structures of the a) Schottky contact SIM and b) the ohmic contact SIM. While the input resistance caused by the Schottky contact is eliminated, the built in voltage Θ_{bi} moves to the transition between the N+ doped region and the p- epitaxial region between the injection node and the collector. ... 83

Figure 5.4: Simulation of floating voltage at the input electrode for a range of input currents with 50 volts bias on the collector and the input being treated as a current source. Voltage values were extracted from ATLAS simulations of the structure shown in figure 5.2a... 85

Figure 5.5: Measured 3dB bandwidth for the fabricated SIM, represented by the diamond points, over a range of current levels. The theoretical response predicted by Eq. 5 is shown as a solid line, with 20 pF used for the node capacitance. A bias of approx. 40 volts was used... 88

Figure 5.6: a) Collector current versus voltage for modeled and fabricated pn junction injection SIMs. The solid black and gray curves represent simulated injection currents of 50 nA and 500 nA respectively. These are plotted along side test results for 50 nA and 500 nA injection which are represented by diamond and triangle plots respectively. The leakage current curve for the fabricated devices is also shown and is represented by the x’s. The fabricated device had a width of 10 μm between the n-wells of the injection and output nodes. b) Gain (M) versus voltage curve for the same modeled and fabricated pn junction injection SIM devices from a)... 90

Figure 5.7: Top view of the first generation SIM. With a 3 x 1.5 μm Schottky contact and a 10 x 10 μm Phosphorous doped well electron collection. The length between the Schottky contact and n+ region is varied between 3 and 9 μm for different device designs on the same substrate... 93

Figure 5.8: Illustration of the SIM showing the injection pn junction and collector pn junction. The collector pn junction is biased to produce a depletion region and the cross sectional area used to determine space charge resistance is illustrated... 93

Figure 6.6.1: Cross section of the ohmic contact SIM with Vsim=50V. Notice that the peak electric field resides at the corner of the N+ doping region roughly a distance D=well from the SIM surface... 97

Figure 6.6.2: Cross section of the ohmic contact SIM with Vsim=85V and Iinjection=10μA. The current density represents injected electrons moving from right to left close to the surface of the SIM, and hole density primarily generated via impact-ionization being drawn from the left N+ doped well toward the P+ substrate... 97
Figure 6.6.3: Theoretical gain vs. voltage (M vs. V) plot as produced by equation 6.5 showing how the gain curves rise very abruptly with a low electron injection efficiency. It compares the theoretical cases of 1% efficiency for electron injection into the high field region and 100% efficiency.

Figure 6.6.4: ATLAS simulations showing the gain vs. voltage curves for Dwell=0.5μm, 1.5μm, and 3.0μm. It illustrates how the impact ionization efficiency is dependent upon the depth of the n+ well (Dwell). This is due to the electric field distribution for varied well depths. It becomes apparent that achieving appreciable gains is very difficult in devices with low impact ionization efficiency.

Figure 7.1: Cross sectional planar diffusion or implantation side profile junction. A junction curvature rj is formed at the edges of the doped regions.

Figure 7.2: Illustration of an N-Well planar diffusion profile where the darkened area shows a) spherical regions and b) cylindrical regions.

Figure 7.3: Breakdown voltage Vb vs substrate impurity concentration, Nb, for plane, cylindrical, and spherical junctions for different radii of curvature [7].

Figure 7.4: 3D cross-section of an avalanche photodiode (APD). Electron hole pair generation occurs in the absorption region after which a current undergoes impact-ionization in the multiplication region and collected. Notice contoured doping of the collection well and floating guard ring to confine carrier to the high field region and prevent breakdown.

Figure 7.5: Illustrating different junction geometries to improve cross-sectional gain efficiency and reduce fields which create premature device breakdown.

Figure 7.6: Electric field magnitude looking down at the SIM. The highest field is at the corners of the collector causing most carriers moving from the input to the collector to miss the highest field region.

Figure 7.7: A circular geometry is necessary to confine electrons and fields in such a way to enhance gain efficiency and prevent premature device breakdown in the lateral plane. The pedestal in turn confines electrons and fields to provide the same benefits in the cross-sectional plane.

Figure 7.8: Top view of a circular pedestal fields. Notice the uniformity of the maximum fields between the collector (outside ring) and input (inside ring).

Figure 7.9: Fabrication of the circular pedestal SIM begins by spinning a) SU-8 2002 on the wafer and b) patterning the active regions of the SIM. The resist allows for the formation of the pedestal by protecting the active region during the c) anisotropic etch to create the circular collector pedestal and ring input. d) The SU-8 is then removed and e) thermal oxide is grown over the entire wafer. f) SU8 is then placed over the wafer to protect the field oxide during polishing and g) the oxide on the top of the pedestal is removed via Chemical Mechanical Polishing (CMP). After cleaning off the
SU8, g) the exposed silicon pedestal tops are then doped with phosphorus spin on glass with the thermal oxide acting as a diffusion barrier. j) Lastly the spin on glass is removed and metal is patterned onto the doped pedestals.

Figure 7.10: Current vs. voltage curve illustrating breakdown for different regions of a planar diode.

Figure 7.11: DC gain for Rectangular and Circular Pedestal SIMs. Circular pedestals exhibit higher controllable gains.

Figure 8.1: IV curve for the forward biased input node on the SIM. As input current, Iin, changes the voltage at the input Vinput must also change. Since the inverse of the slope represents resistance, the resistance at low input currents is quite large.

Figure 8.2: The IV curve of a diode biased with a large DC current to a setpoint. At that setpoint a small change in current causes a linear change in voltage such that the resistance seen by the small signal is constant and determined by the large DC current.

Figure 8.3: Conduction band diagram of the SIM under bias with injected electrons changing the high field region and thus altering the quasi-Fermi level at the input.

Figure 8.4: Response time τ, of the SIM for various changes in current ε, for values of I2 which are practically attainable in SIM operation. Capacitance used in this figure is 1.5 pF.

Figure 8.5: The small signal response time for a system with small current signals no larger than one tenth the DC current signal. The resistance seen by the small signal is set by the DC current. Capacitance = 1.5 pF.

Figure 8.6: The SIM Test Chip setup with bias-tee and TIA. The R and C values on the SIM Test Chip are used to filter the DC photodiode bias and are R = 100 Ω and C = 200 nF in value respectively.

Figure 8.7: Measured and theoretical 3 dB frequency response vs. change in input current 1 uA and 100 nA DC input currents. The theoretical model is the mixed current model in equation 8.25.

Figure 8.8: As bias is applied to the SIM collector, the frequency response of the device drops.

Figure 8.9: Testing setup using an Agilent 4159 Semiconductor Parameter Analyzer to discover a collector induced voltage swing at the input.

Figure 8.10: Measured change in voltage vs. current at the input of the SIM due to changes in collector potential.

Figure 8.11: Simulated change in voltage vs. current at the input of the SIM due to changes in collector potential from SILVACO. Substrate doping concentration 1e14 cm-3.
Figure 8.12: SIM input resistance and corresponding input current for collector voltages of 0, 20, and 40 volts. The theory line represents the theoretical kT/I resistance of the junction.

Figure 8.13: A surface SIM that potentially resists barrier lowering due to the collector at the input. a) The P+ dopant acting as a jacket around the n-well input b) keeps the built in voltage θbi from being affected by changes in the collector voltage. c) Simulated input current vs. input voltage in Silvaco for the structure seen in a).

Figure 9.9.1: SIM where electrons are injected from the substrate.

Figure 9.9.2: Two SIMs pre amplify current generated from a microphone before amplification in a summing amplifier.

Figure A.1: SIM Oxide Growth Chart #1: This chart shows the necessary step gas flows, step temperatures, and step durations to grow roughly 1200 angstroms of thermal oxide to act as a KOH etch mask in subsequent steps. The low temperature provides the necessary oxide grow while minimizing the amount of diffusion within the EPI layer.

Figure A.2: SIM Oxide Growth Chart #2: This chart shows the necessary step gas flows, step temperatures, and step durations to grow 5000 angstroms of thermal oxide. This oxide acts as an insulator and passivation layer for the SIM.

Figure A.3: SIM Diffusion Chart #1 for P-8545 Spin on Dopant (SOD): This chart shows the necessary step gas flows, step temperatures, and step durations to diffuse phosphorus into the SIM pedestals to a depth of roughly 1.3 um. It is important that sufficient oxygen is always flowing into the furnace during the diffusion. Oxygen allows the phosphorus in the SOD to diffuse by turning the phosphoric acid (H₃PO₄) within the mixture into Phosphorus Pentoxide (P₂O₅). It is important to completely oxidize all the H₃PO₄ within the SOD otherwise it will form a bond with the silicon that cannot be removed unless it is first oxidized. Following diffusion, it is important to immediately dip the wafers in Buffered Oxide Etch (BOE) to completely remove the SOD before the P₂O₅ reacts with the moisture in the air to form H₃PO₄.
1 INTRODUCTION

1.1 Introduction

In recent years, the number and scope of systems that utilize light collection as a primary function of operation has grown appreciably. Applications which utilize Charge Coupled Devices (CCD) [8] and Complimentary Metal Oxide Semiconductor (CMOS) sensors [9] have not only changed the way people view photographs but revolutionized data acquisition and mapping procedures in surveillance systems worldwide. Avalanche Photodiode (APD) arrays collect and amplify small amounts of light from the cosmos to facilitate deeper probing into the universe [10], while development of single photon detection systems create a method of key distribution that is physically impossible to intercept. One key application in biophotonics can resolve single molecules by bonding it to a fluorescing tag. Resolving the fluorescing signal from this tag requires a sophisticated light collection system [11], but further realizes the allure of mobile labs on a chip [12]. Perhaps no industry has benefited as much in the past two decades from enhanced light collecting techniques than fiber optic networks which effectively make the world smaller due to their multi-channel, gigabit speeds [13]. For each of these technologies mentioned, there are many others whose function relies upon some form of light collection. While some of these technologies do not operate at the extreme limit of optical detection, those that do could significantly benefit from new, inexpensive forms of low noise current amplification.
Low noise current amplification is not only desirable for technologies that involve light collection. In reality, any detection technology which collects signals based on electrical current could benefit from low noise current amplification. While all current based signals are eventually amplified by transistor based amplifiers, different noise factors may limit their performance. The limiting noise factor in a background noise limited detection system consists of the current signal from the detector which does not constitute part of the desired signal. In such a case, the signal itself serves as the chief method of introducing noise into the system. If a system is background noise limited, it cannot benefit from a low noise current amplifier because signal and noise are equally amplified. If, however, the current source is sufficiently clean, the primary noise limiting factor then becomes a fixed system noise located within the detection system. A system noise limited detection scheme is commonplace in systems where current from the detector is diminished to the extent that the signal is below the noise threshold of the transistor based amplification circuitry of the system. This is fairly commonplace but not limited to fiber optics where the narrow line width of the laser source and subsequent filters eliminate most of the background noise.

Detection systems that suffer from a fixed system noise typically implement a low noise preamplifier to amplify the signal above the noise threshold of the transistor based circuitry. These low noise current amplifiers utilize the principle of impact ionization as found in Avalanche Photodiodes (APDs) or secondary ion emission as found in photomultiplier tubes (PMTs). Several factors inhibit some detection systems from benefiting from low noise current amplification. APDs and PMTs are limited to amplifying current from light signals while many noise limited systems rely in current based signals instead. In such a scenario a low noise current amplifier needs to be matched to a non-optical detection component. In such a scenario the
multiplication region is all that would be needed as the preexisting current source would already be optimized. The final factor is cost. If such an amplifier cannot be produced at a reasonable price, other solutions to system noise will be implemented. In essence a new type of amplifier built on the fundamental physics of other low noise amplification devices is needed.

In order for these hurdles to be overcome, detection and amplification regions must be physically separated, and the relative cost of implementation must be low. Furthermore, such an amplifier needs to be a stand-alone device that can accept current from any random source of input no matter whether that current is generated optically or electrically. The relatively small size necessary to utilize impact ionization is desirable over secondary emission, as its means of internal, low noise gain. Utilization of standard fabrication techniques for simple integration with current technologies is also desirable. This configuration of physically separate and individually optimized detection and amplification devices has several advantages. Not only does it allow for further flexibility of systems that already use impact ionization based amplifiers, but also pave the way for new applications.

This dissertation investigates the possibilities of such an amplifier. The Solid-state Impact-ionization Multiplier (SIM) is a stand alone amplifier that utilizes impact ionization as its primary means of current multiplication. The primary purpose of its development is to improve and enhance current and light collection technologies via low noise pre-amplification.
2 CURRENT OPTICAL DETECTORS

2.1 Introduction

Before discussing the SIM in detail, several of the current technologies which are used in light collection today will be explained to provide a better understanding of current technology. Thus fostering a greater appreciation for the role the SIM seeks to play to improve upon existing, mature technologies.

2.2 The Photomultiplier Tube

A Photomultiplier Tube (PMT) is a vacuum tube technology still widely used today. The extreme sensitivity, broad spectrum responsivity, and configurable spatial resolution make it widely used today in, fluorescence detection [14], astronomy [15], and single photon counting [16].

Figure 2.1 shows a rudimentary cross sectional cut away of the basic PMT. Photons enter the PMT through a faceplate or input window and strike a photocathode. Energy from incident photons frees electrons from the photocathode by the photoelectric effect. These electrons are then amplified as they strike a series of dynodes and free secondary electrons. Primary and secondary electrons are finally collected for electrical measurement at the anode. A high voltage power supply and resistor network provides the potential necessary for electron amplification between the dynodes.
Most PMTs are biased to 1-2 kV and contain about 10 dynodes. Thus 100-200 volts are dropped across each dynode. For every primary electron that strikes a single dynode, approximately ten secondary electrons are generated. These high potentials produce electron gains of roughly 10^6 and response times between 5 ns and 300 ps [1]. Thus the sensitivity and response time of the PMT are of notable significance. A number of material variations in PMT construction allow sensitivity to a broad spectrum of radiation. Variations in photocathode material allow optimal sensitivity to radiation from 115 nm to 1200 nm. Depending on the light source, different input window materials are selected for optimal transmission [17].

![Diagram](image_url)

Figure 2.1: Illustration of the rudimentary components and electron action within a photomultiplier tube.
When optimal window materials are unavailable a scintillator is implemented. A scintillator is a type of phosphor which fluoresces to when struck by radiation outside of the window spectra to produce a proportional amount of light within the window spectra. For example, detection of x-ray range energies using PMTs was reported using a scintillator input window made of yttrium aluminum peroxide doped with cerium. The X-rays struck the scintillator window causing it to fluoresce. Fluorescing was captured by the photocathode and amplified in the typical manner. Such a scintillator/PMT combo successfully detected x-ray spectra from 2 to 400 keV [18]. Table 2.1 shows different photocathode, window, and scintillator materials with corresponding wavelength sensitivity.

One drawback to a conventional PMT is that it cannot detect spatial differences in incident radiation. Typically such a task would be accomplished by a CCD device, however fine-mesh and microchannel plate (MCP) PMTs exhibit spatial resolution similar to a large, low resolution CCD and with excellent sensitivities. A Fine-mesh PMT utilizes metal mesh dynodes for electron multiplication. Between each dynode lies a focusing mesh designed to preserve electrons spatial position as they pass through the dynodes. Electrons then strike an anode matrix and are counted according to corresponding position. In this way, some spatial position is preserved. MCP PMTs use a similar anode, but multiplication through the dynodes consists of several small micro-channels that electrons move through. As electrons strike the walls of the tube, they multiply. No focusing grid is necessary as the micro-channels provide electron confinement. These PMTs exhibit superior resistance to magnetic interference due to their design.
Despite their vacuum tube nature, PMTs satisfy numerous research and commercial applications thanks to their sensitivity, response time, broad spectrum configurations, and newly developed spatial detection.

Table 2.1: Photomultiplier Tube Materials [1]

<table>
<thead>
<tr>
<th>Material</th>
<th>Useful Wavelength (nm)</th>
<th>Photocathode Use</th>
<th>Window Use</th>
<th>Scintillator Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsI</td>
<td>115 – 200</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sb-Rb-Cs</td>
<td>Visible</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sb-K-Cs</td>
<td>Visible</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sb-Na-K-Cs</td>
<td>300 – 850</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>GaAs</td>
<td>300 – 850</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Ag-O-Cs</td>
<td>300 – 1200</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>InGaAs</td>
<td>300 – 1200</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BSiO2 Glass</td>
<td>300 – 1200</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>MgF2</td>
<td>115 -</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sapphire</td>
<td>150 -</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Synthetic Silica</td>
<td>160 -</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>YAlO3:Ce (YAP)</td>
<td>0.0005 -0.09</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
The signal to noise ratio of the PMT is given by Equation 2.1

\[
\frac{S}{N} = \frac{I_{ph}}{\sqrt{2qFB(I_{ph} + 2(I_h + I_d)) + 4F_a B kT/R_{eq}} / G^2},
\]

where \(I_{ph}\) is the incident light, \(F\) the excess noise factor, \(B\) the bandwidth, \(G\) the mean gain, \(I_b\) is the average photocathode current produced by background light, \(I_d\) the dark current, and \(F_a\) the amplifier noise figure. Since the PMT has such high gain, it is assumed that the amplifier noise is negligible and hence not included [19].

PMTs also suffer from several drawbacks. The principle drawback is size. The smallest are typically 1 inch in diameter. Such a measurement is of the tube itself and fails to include the kilo-volt power supplies. While a microchannel plate helps to add limited spatial resolution, it is still quite poor. PMTs are also quite slow in comparison to their solid state counterparts. This is primarily due to the relatively large distance electrons must traverse through the dynodes. So while PMTs exhibit the best sensitivity, of any detection device with internal gain, its bulky size limits overall performance.

2.3 The PIN Photodiode

The PIN photodiode is the first solid state detector to be discussed in this chapter. Furthermore, it is the only detector to be discussed without an internal gain mechanism. The simple nature of the PIN photodiode makes it, perhaps, the most simple and robust of all light collection devices. The PIN is a simple semiconductor PN junction optimized for responsivity, speed and low noise.

A cross-sectional view of a PIN is illustrated in figure 2.2. The major change to the PN junction is the inclusion of an intrinsic layer between the heavily doped p and n structures, hence
the name PIN. Light incident on the PIN creates electron hole pairs within the lightly doped intrinsic region which is completely depleted with moderate bias. Electrons and hole are separated by the field and are collected at the n and p type regions of the PIN. Doping the top of the PIN with a heavily doped but thin n-type region improves responsivity by minimizing the amount of light lost before it is collected in the depletion region. Further improvements to responsivity require that all the light that enters the depletion region completely ionizes within that region. This is accomplished by doping heavily next to the intrinsic region. The depletion region formed at this junction combined with applied external bias creates a depletion region sufficiently large to capture all incident light. Thus the introduction of an intrinsic region makes the PIN as responsive as quantum efficiency will allow.

The intrinsic layer further enhances high speed optimization. Increasing the intrinsic layer thickness effectively reduces the junction capacitance of the photodiode. Such a reduction in capacitance can increase frequency response by changing the RC time constant. There is, however, a trade-off. The wider depletion region increases the transit time of electrons and holes through the depletion. Thus at high bit-rates an excessively wide depletion region will not allow carriers from a first pulse of light to clear the depletion region before a second pulse arrives and the two pulses will appear as one. However, an excessively narrow depletion region lacks responsivity and suffers from poor bandwidth due to RC time constant limitations. The optimal design requires depletion region transit time to be no more than half the modulation period of the incident light [20]. This satisfactorily optimizes the RC and transit time factors without considering effects on device responsivity.
PIN photodiodes exhibit low noise characteristics, the majority of which is due shot noise. While leakage currents, background currents and actual signal currents contribute to overall noise, the PIN, unlike all other devices discussed in this chapter, has no internal gain mechanism and thus exhibits less noise than devices with an internal gain mechanism. The Gain-Bandwidth product of a PIN photodiode is simply the bandwidth.
\[f_{3\text{dB}} = \frac{2.4}{2\pi \left(\frac{W_d}{V_s} \right)}, \]

where \(W_d \) is the depletion region width, and \(V_s \) the saturation velocity of the electrons. The signal-to-noise ratio can be seen below.

\[\frac{S}{N} = \frac{I_p^2}{2q(I_p + I_B + I_D)B + 4kTB / R_{eq}}, \]

where \(I_p \) is the signal generated current, \(I_B \) the background current, \(I_D \) the dark current, \(B \) the bandwidth, and \(R_{eq} \) the equivalent resistance of the PIN and associated load resistors [20].

Factors that make the PIN advantageous are many. The relatively straightforward optimization and innately low noise create a device that is easily fabricated with numerous different semiconductor materials at relatively low cost. Consequently, the PIN photodiode is often the detector of choice wherever system noise is not a limiting factor.

2.4 The Avalanche Photodiode

Avalanche Photodiodes (APDs) are a solid state form of photomultiplier tube in that a single photon can cause the output of several electrons. APDs achieve this internal gain through a series of impact ionization events known as avalanche gain. Years of research have improved responsivity, speed, and noise of these devices such that these features, combined with excellent gains, create an attractive device in situations where a fixed system noise is a limiting factor.

Creating an Avalanche Photodiode (APD) can be as simple as reverse biasing a PIN photodiode until the electric field within a region of the PIN becomes large enough to allow free carriers ionized by light to ionize other carriers from the semiconductor lattice. The overall effect is internal current gain similar to a PMT but in a smaller package and via a different
physical mechanism. Device design greatly affects APD responsivity. Different APD structures have been used through the years with fair success, but perhaps the most common and successful is the Reach-Though APD. The Reach-Through APD is illustrated in figure 2.3. It sandwiches an intrinsic semiconductor layer between a pn junction and heavily doped n or p type material. Under high bias voltages, the field in the pn junction becomes sufficiently strong to create impact-ionization events or avalanche multiplication. The field from the pn junction also needs to be large enough to completely deplete the intrinsic portion of the device. In this way the field “reaches through” to the other side of the APD thus making a large absorption region. Thus design considerations can greatly affect the overall device responsivity.

Device design further affects the overall speed of the APD. While a wide depletion region allows for a greater responsivity, too large a region increases the region carriers must traverse and thus the frequency response becomes transit time limited. Significant attention must be placed on doping and geometry to ensure that electric fields throughout the APD optimize gain and transit time without creating premature device breakdown. If insufficient field drops across the intrinsic region, carriers will not traverse the region at saturation velocity. In such a situation, biasing the APD further may enhance the transit time only to cause premature breakdown the multiplication region. While generation of secondary carriers via impact ionization within the multiplication region of the APD also decreases the frequency response, this is not readily evident until the gain-bandwidth of the APDs exceeds 100 GHz [5] and will be treated in more detail in Chapter 2.
Figure 2.3: a) A cross-sectional view of a Reach-Through Avalanche Photodiode (APD) where light (hv) induced holes are swept from the depletion region due to the presence of a fairly uniform field. That same field draws electrons into a high field impact-ionization region producing gain. b) Electric field magnitude in the APD plotted against distance (Y).

Due to the nature of impact ionization, excess noise is introduced with each impact ionization event. This excess noise is typical of all impact ionization events and contributes to the overall noise of the system. Consequently, APDs are used in applications where the noise is not limited by the detector, but rather by some set system noise such as a transistor based amplifier. In such a case where the APD noise is small compared to noise generated in an external amplifier, APDs can effectively amplify an otherwise lost input signal to a current level
above that of the amplifier. While conventional methods for calculating excess noise often overestimate the actual noise generated by impact ionization in the APD [21], [22], they are fairly accurate for larger depletion region devices and will be discussed in Chapter 2.

APDs satisfy an important need in measurement and detection systems by internally amplifying light signals before conventional amplification. They do this in an efficient, fast, and low noise manner with many similarities to PMTs but in a more compact, high-speed package.

2.5 Single Photon Counting APDs

Single photon counting constitutes to some extent the holy grail of optical detection today. APDs and PMTs are useful in successfully detecting single photon events. However, the presence of a single photon induced electron hole pair does not constitute sufficient current to be detected in conventional APD or PMT schemes. Consequently the overall bit rate of these devices suffers.

Detecting photons in an APD requires a current gain substantially larger than the gains of 10 to 100 that an APD biased in a conventional linear mode can provide. Higher gains are extracted from devices by designing them to withstand over-biasing and still stay at a zero current state for some microseconds to seconds before breakdown. This type of APD is known as a Single Photon Avalanche Diode (SPAD). The state of over biasing that these diodes operate in is known as Geiger mode operation. If a photon enters the SPAD during this time, it can set off an ionization event and cause the diode to breakdown. It should be noted that the photon is not itself detected, but merely the ionization event. The large ionization event produced would be the same whether a single photon ionized or 10 photons ionized. Since other external factors can cause a false ionization event, photon counting diodes are shielded and cooled to protect
against stray photon events and thermal fluctuations from triggering breakdown. After breakdown is detected, the diode is then quenched. Quenching lowers the applied bias on the diode to a voltage below breakdown. This allows the avalanche effect to die out and the diode to establish a zero current level before it is over biased again. This time allowed for quenching before re-biasing is called dead time. Any photon entering the SPAD during dead time has no probability of being detected.

Even during Geiger mode operation, not every photon triggers an ionization event. Device quantum efficiency limits the percentage of single photon events that successfully create electron hole pairs. Furthermore, the probability that these electron hole pairs can create a chain of ionizations sufficient to cause the whole diode to ionize is not guaranteed either. Other effects of Geiger mode operation such as diode heating, dead time and afterpulsing further limit performance of APDs optimized for single photon detection.

Diode heating is still a problem even on the cooled stages used in single photon detection schemes. Thermal fluctuations sufficient to ionize carries within the depletion region of an APD can cause false ionization events. These heat sources typically originate from the light source and spread to subsequent areas from there. For example, incident photons may induce phonons within the structure of the APD which may cause a false detection by thermally freeing carriers which in turn further heat the diode. Proper mounting on heat sinks can significantly reduce the amount of thermal energy capable of degrading device performance provided the packaging and other mounting constraints of the APD provide a pathway low thermal resistance [23].

Dead time constitutes the amount of time required to quench an ionization event by lowering the voltage below the breakdown voltage before the ionization event passes and the APD can resume Geiger mode operation. In many cases, the quenching circuitry can influence
the dead time. Passive quenching circuits typically consist of a large resistor in series with the SAPD. A large amount of current passing through the resistor causes more and more voltage to drop across it. This effectively reduces the bias on the SAPD below breakdown and ensures that the ionization event does not run away. As the ionization event subsides, the voltage is reapplied according to the RC time constant of the system. Since the capacitance of the system is typically dominated by the diode, the resistance is the only factor that easily modifies the dead time of the system. The trade-off is that the larger resistance creates a larger voltage drop and thus a higher photon electron counting efficiency in silicon SPADs whereas a smaller resistance allows for a shorter dead time and therefore faster bit rate [23]. Active quenching circuits seek to drastically lower the diode voltage as rapidly as possible once an ionization event is detected and then quickly ramp up the voltage after the event passes. Consequently, if elimination of the trade-off between counting efficiency and bit rate is desired, then active quenching circuits of most desirable.

All these limitations imposed on diode performance would be of little consequence and still allow for telecom bit rates were it not for afterpulsing. Afterpulsing results from carriers that are trapped in shallow states that are later released due to thermal excitation. Naturally, the thermal energy gained from an ionization event frees other carries which need to be fully dispersed before recommencement of Geiger mode operation. In consequence, diode dead time is increased as the afterpulsing carriers are allowed to diminish. Afterpulsing is proportional to the population of traps in the material and the time constant that governs the length of the afterpulsing only increases with lower temperature. This is most detrimental to performance of telecom SPADs optimized for far-infrared operation. InGaAs/InP photon counting APDs which exhibit an operating frequency in the GHz range when operated below breakdown are only
capable of low MHz rates in Geiger mode operation. The InP in these photodiodes appears to house a significant number of traps as its absence significantly reduces afterpulsing. However, afterpulsing was also decreased by adding several grading layers between the InGaAs and InP band discontinuity. This discontinuity creates a barrier that is most ideal to trap a significant number of carriers that can only be freed by thermal excitation [24]. While several active biasing schemes are employed to milk the highest possible bit rate from these devices, they still fall fairly short of conventional telecom standards in many ways [25]. Contrast this to silicon SPADs which exhibit little or no afterpulsing. Consequently, silicon SPAD detection systems are capable of GHz speeds. Unfortunately, silicon detectors cannot be employed in fiber-optic communication systems due to their inability to detect far-infrared light.

The race to make better SPADs suitable for telecom is in somewhat of a quagmire. It should be noted that as recently as 2008, reports on GHz Quantum Key Distribution (QKD) using InGaAs APDs have been published. This is slightly misleading as it sounds like these APDs operate at GHz speeds. In reality, they transmit the quantum key for a GHz speed fiber. In a recent article, [26] Yuan reported a proof of principle 100 Kbps secure bit rate over a 40 km fiber. Thus efforts to improve the overall detection setup have helped to negate some effects such as diode heating. However, current methods to quench afterpulsing in such diodes leave a significant material hurdle to reap the rewards of faster operation speeds.

2.6 Limitations of Existing Optical Receivers

The previous sections seek to give an overview of some devices used in light detection that have similar detection or multiplication properties to the SIM. Each of these devices is useful as evidenced by their commercial existence and physical properties. However, each
device has physical limitations that inhibit improvement in overall performance and confine them to their current state of usefulness in optical detection. It should also be clear that a hybrid of these devices would be a most useful and welcome addition.

PMTs detect small signals best thanks to their capacity for enormous gains. However, they are large and bulky, limited in bandwidth and in many cases suffer from poor quantum efficiency. Most PMTs exhibit a quantum efficiency of approximately 30% at optimized wavelengths [27].

The success of SPADs, especially at telecom wavelengths, is primarily a material issue. Until defects in III-V semiconductors can be significantly reduced or until new defect free semiconductors can be developed that replace current III-V semiconductors, afterpulsing will continue to plague quantum cryptography systems and confine them to MHz operations. On the other hand silicon SPADs look quite promising.

PIN photodiodes are excellent performers in bandwidth. Their small size, simple design and ability to be material wavelength optimized create a high speed, efficient device. However, they are limited by amplifier noise. APDs remedy this problem by adding an internal amplification medium to the PIN. This effectively gives the APD 10 to 15 dB greater sensitivity than a PIN diode alone. However, the multiplication and detection layers are now physically linked together in such a way that makes them interdependent. If there is any sad and disappointing maxim in fabricating APDs it is this: *Materials with good detection properties typically exhibit less than ideal multiplication properties.*

The converse is also usually true. Therefore optimization of absorption layer only occurs at an increased cost to multiplication layers. This is often the case with APDs used in fiber-optic networks. InGaAs absorption layers exhibit high quantum efficiency at 1500 to 1300 nm
wavelengths, however the small bandgap coupled with the overall material properties of InGaAs make it a poor multiplication layer. This short coming is solved by epitaxial growth of a material more suitable for impact-ionization multiplication onto the InGaAs absorption region. If any material could be chosen then silicon would be the first choice. Silicon is in most instances is less expensive, produces less excess noise during impact-ionization, and most ideal during impact-ionization when compared to other materials.

Silicon is fairly straightforward and the least expensive of all epitaxial growth process. Because silicon is monatomic, only one carrier gas is necessary for the reaction to properly occur. The stoichiometry is simple and hence so is the crystal growth. Silicon is also readily abundant for harvest all over the earth.

Silicon also exhibits the lowest excess noise factor of any semiconductor or superlattice during impact ionization. As electrons and hole undergo impact ionization a certain amount of excess noise is generated for each event. The larger this noise, the smaller the Signal to Noise Ratio (SNR) and the lower the sensitivity of the device. Silicon exhibits the least excess noise of any semiconductor. Therefore utilization of silicon as a multiplication layer creates a most sensitive APD.

Impact ionization is also the most ideal in silicon. Ideally, when electrons and holes enter a high field and undergo impact ionization, single carrier multiplication is most desirable. In an ideal case, an electron would ionize to create an electron-hole pair. The electron would travel through the field until it gained enough kinetic energy to ionize another electron hole pair. On the other hand, the holes would never reach ionization threshold energy. In silicon electrons are 20 times more likely to reach ionization thresholds than holes. This allows silicon to be treated for the most part as an ideal impact ionization system. This single carrier ionization system
reduces the transit time of signals through the APD. Choosing another semiconductor for a multiplication layer like InP would be less advantageous with regard to carrier multiplication. In InP holes are more likely to ionize, but the difference between electron and hole ionization probabilities is not nearly as large as silicon. This means that electron and holes ionize and in turn create more electron-hole pairs that in turn continue the process. Instead of a swift march of ionizing electrons across the multiplication, the equal probability of carrier ionization creates a feedback mechanism that allows pulses to linger in the multiplication region. This increases transit time and decreases the device bandwidth. So silicon is the multiplication layer of choice.

Unfortunately, silicon is not the multiplication layer of choice. The reason goes back to the interconnectedness of absorption and multiplication layers in APDs. Silicon cannot be epitaxially grown onto InGaAs, HgCdTe, InAs or any other III-V semiconductor because of a large difference in the lattice constant of the two materials. Any attempt to do so would cause strain induced defects at the interface between the two materials that would more than negate any positive effects a silicon multiplication layer would provide to the device. Instead the material of choice is InP because differing alloys of InGaAs or buffer layers between the absorption layer and InP multiplication layer can be lattice matched. Thus, even though InP has a greater excess noise factor and exhibits less than ideal carrier multiplication ratios, it is often the multiplication layer of choice in telecom APDs. It should be noted that while techniques employing wafer-bonding instead of epitaxial growth have sought to create APDs with silicon multiplication layers and InGaAs absorption layers, no commercially viable devices have been made yet [28].

APDs also require that electrons travel through the same pathway as holes. In such cases electrons may recombine with holes and thus quench current gain and cause recombination noise. This is particularly a problem in multiplication regions with less than ideal carrier
multiplication ratios. It would be best if the multiplication region utilized all three dimensions of space in the multiplication region. By so doing, fields could be biased to effectively separate electrons from holes and prevent recombination.

The progress made on APDs over the last two decades has been most impressive. While still somewhat of a niche market and made by only a handful of skilled companies, they have made the APD a reliable, performance device used in a variety of applications. However, what is lacking is the ability to optimize the impact ionization mechanism independently and without consideration for the detection mechanism. The SIM seeks to bridge that gap.

2.7 The SIM: A Standalone Impact Ionization Amplifier

The Solid-state Impact-ionization Multiplier (SIM) seeks to act as a stand alone current amplifier utilizing impact ionization. It is made of silicon and therefore possesses the previously described attributes of such a material. It is also made using industry standard VLSI techniques and machinery. Such a device proves advantageous because it accepts any arbitrary current source. Thus ideally, any detector could be optimized without consideration for the amplifier provided it produce a current. In the most practical of scenarios, this means that photodiodes optimized for different wavelengths of light can be electrically wired to the SIM. The output current from the photodiode is input into the SIM. Current injected into the SIM undergoes impact ionization, and leaves the SIM amplified. Furthermore, output signals from each of these photodiodes looks identical provided the inputs are identical. Thus, the SIM is not discriminatory to different current sources. The viability of this device now depends of its ability to perform similarly to APDs in other respects.
The purpose of this dissertation is to evaluate several parameters and important functions of the SIM that have previously been unknown. These main aspects focus on improving the internal gain of the SIM, optimizing frequency response, and improving space charge resistance. Knowledge of these parameters will not only help to assess the commercial viability of the SIM, but also provide a feel for general target applications.

2.8 Dissertation Overview

The SIM was created by Dr. Aaron Hawkins and his PhD student Hong-Wei Lee. The first working SIM was documented in the summer of 2005. It was working in the sense that it exhibited DC current gain when fed from a DC current source (a photodiode under constant illumination). During the ensuing months and even year, much work was done to demonstrate device operation, current gain impact ionization generated on the silicon surface or substrate, and high gain effects through cascading several SIMs together. This work seeks to answer some of the questions that, at that time, were yet to be answered but mostly hadn’t even been considered by the conclusion of Hong-Wei’s dissertation. Chapter 2 has sought to give a rudimentary feel for some existing optical detection devices and present a convincing need for a device like the SIM. Chapter 3 deals with the history and theory of impact ionization including the gain mechanism, impact ionization rate, excess noise, and the bandwidth. Chapter 4 covers the original SIM device operation. The fundamental operation of the SIM will be outlined as well as the first inquisition probing the frequency response of the SIM. Suggestions for an improved SIM are also outlined. Chapter 5 introduces a second generation device that replaces the Schottky metal injection node with an ohmic contact pn junction injection node. Chapter 6 discusses improved gain in second generation SIM devices by developing a Buried Oxide
structure. Chapter 7 further addresses geometrical issues in the SIMs architecture to improve AC gain by eliminating premature device breakdown. Chapter 8 discusses frequency response of the SIM with a mixed current input and setups to further improve frequency response as collector induced field effects are minimized. Chapter 9 deals with future work and practical applications of the current SIM.
3 THEORY OF IMPACT IONIZATION

3.1 Introduction

Impact ionization or avalanche breakdown as been observed and studied in semiconductors since the 1950s [29]. However, as optoelectronic device designers envisioned enormous benefit from avalanche breakdown, this phenomenon, which was once considered the extreme limit of useful device performance, is the primary mechanism in the SIM. Hence the original term of “avalanche breakdown” which signified the limit to device performance is also known by many as “avalanche gain.” In this chapter the impact ionization mechanism behind avalanche gain will be discussed as well as classical gain equations. Since impact ionization occurs in most medium to large bandgap semiconductors, these equations are fairly general and apply to this wide range of crystals. The parameters that fit this equation to the peculiarities and unique qualities of each semiconductor are the ionization coefficients. These are unique to each semiconductor. Their measurement and effect on device gain, excess noise, and bandwidth will then be discussed.

3.2 Impact Ionization Gain Mechanism

When an electric field is applied to a semiconductor, free carriers within the semiconductor gain energy and drift through the field. As they drift, they lose energy through collisions with phonons, impurities, or defects. Under low fields, the energy imparted to carriers
by the field and the energy lost through collisions exhibit a check on each other. Thus the carriers’ energy and lattice energy are in equilibrium. At high fields, this equilibrium decays as carriers gain more energy from the field than they impart to the lattice through collisions until they possess sufficient energy to free carriers from the lattice via impact ionization. This results in the generation of a secondary electron and hole in the conduction band and valence band respectively. While in the high field these secondary electron hole pairs also gain sufficient energy to free other electrons from the valence band. As this process continues the number of ionizing carriers rapidly increases causing avalanche breakdown. Figure 3.1 illustrates electron impact-ionization.

Figure 3.1: Impact ionization in a high field region where electrons are the principle ionizers.
Typically, a fairly high field is needed to create ionization events. Naturally the bandgap is of important consideration. The larger the bandgap the greater energy needed to free or excite valence band electrons into the conduction band. In low bandgap materials such as InAs ($E_g = 0.33$ eV), a field of 10^4 V/cm is necessary. While large bandgap semiconductors such as GaP ($E_g = 2.24$ eV) require far greater than 10^5 V/cm [30]. Silicon ($E_g = 1.12$ eV) requires a field of roughly 1.2×10^5 V/cm to breakdown. Thus a minimum ionization energy exists which has some dependence on the semiconductor bandgap.

3.3 Ionization Threshold Energy

It seems fairly intuitive that the minimum energy required to excite an electron from the valence band to the conduction band would simply be the energy of the bandgap. However, this assumes a perfectly elastic collision where all energy from electron 1 is transferred to free electron 2. Furthermore the secondary hole is also neglected. Thus a more comprehensive model requires ionization energies greater than the bandgap. Even using the most simple parabolic band structure the lowest threshold energy, E_i is greater than the bandgap. Consider two parabolic bands consisting of a conduction band with effective mass m_e and a valance band with effective mass m_h. After an electron undergoes impact ionization, there are now three particles. The original electron and secondary electron hole pair. Assuming the collision to be elastic, conservation of energy and momentum show the minimum total energy required for an electron to reach threshold is

$$
\frac{1}{2} m_e v^2_i = E_g + \left(\frac{1}{2} m_e v^2_e \times 2 + \frac{1}{2} \times m_h v^2_h \right).
$$

\[3.1\]
The momentum follows as

\[P_{i,e} = m_e v_i = m_e v_e \times 2 + m_h v_h. \] \[\text{(3.2)}\]

In the case that \(m_e = m_h \), and that the velocities of the secondary electron hole pair are equal (i.e. \(v_e = v_h = v_f \)), these equations can be further simplified such that

\[\frac{1}{2} m_e v_i^2 = E_g + \frac{3}{2} m_e v_f^2 \] \[\text{(3.3)}\]

and

\[m_e v_i = 3m_e v_f. \] \[\text{(3.4)}\]

Substituting momentum into energy yields the famous 3/2 the bandgap ionization energy explained by Wolff [31]

\[E_i = \frac{1}{2} m_e v_i^2 = 1.5E_g. \] \[\text{(3.5)}\]

While this is a good rule of thumb for direct band semiconductors, it is a poor one for indirect band semiconductors. In the case of silicon, the ionization energy is significantly higher than the 3/2 bandgap rule. This, as Wolff surmised, has a great deal to do with the indirect nature of silicon. The band structure of silicon is shown in figure 3.2 [2]. Because of silicon’s indirect bandgap, conservation of crystalline momentum requires an indirect process to allow transfer of electrons from the \(\Gamma \) valley to the X valley. In such a case indirect mechanisms such as the umklapp process, phonon absorption or other mechanism facilitate impact ionization. These events in silicon require more energy than a simple parabolic direct band structure. Since Wolff’s theoretical contributions, careful empirical measurements on silicon reveal a 2.6 eV electron ionization energy and 5 eV hole ionization energy.
The disparity between electron and hole ionization energies makes silicon a most advantageous material when designing a device based on avalanche gain, but still proves somewhat of a theoretical mystery. While several theories exist which seek to explain electron and hole ionization disparities, a unified encompassing theory is still missing. Consequently, while a considerable amount of theoretical work has proved beneficial in explaining empirical measurements, these models are often too confined and lack sufficient robustness to shed light on physical attributes which have not yet been realized. For those desiring some explanation, a fairly straightforward theoretical reason is due to a .1 eV separation between the intersections of
two conduction bands at the X valley minimum in silicon. This intersection significantly increases the density of states within the conduction band. thus allowing for completion of more indirect bandgap events by providing more open electron states [3]. Valence electrons can only move to the conduction band provided that their energy and crystalline momentum matches an unoccupied state within the conduction band. Provided that indirect factors such as electron phonon interactions provide the indirect shift in crystalline momentum, the energy must still match that of an unoccupied conduction band state. Thus while a 1 eV separation in two conduction bands has no effect on crystalline momentum, it provides a significantly higher probability that ionized electrons will find the necessary energy state within the conduction band than ionized holes will in the valence band.

3.4 Ionization Coefficients and Gain Equations

The equations that describe impact ionization are quite similar for all semiconductors. The principle difference is the value of the ionization coefficients. These coefficients denote a probability of ionization. They are heavily dependent on electric field. The ionization coefficient for electrons is defined as α, while the ionization coefficient for holes is β. The units for α and β are in inverse length, typically cm$^{-1}$. This unit denotes the reciprocal of average distance an electron or hole must travel within a uniform field before ionizing a secondary electron hole pair. After examining the units of these ionization coefficients and examining many of the illustrations in the chapter, the reader may be lead to believe that impact ionization is a deterministic and wholly predictable process in which each electron and hole involved in the process have equal ionization potential. This is not true. The units of α and β denote the bulk action of carriers and the illustrations are to convey an overall view of the mechanism. The
random nature of impact ionization is not carefully considered in classical impact ionization
equations. Thus they are of little use when predicting impact ionization events through a space
smaller than $1/\alpha$ or $1/\beta$. Furthermore the robust nature of classical gain equations depends
greatly on uniform field distribution. In the case of the SIM and most APDs, the classical model
is sufficiently robust. However, in cases where classical conditions fail to adequately satisfy a
particular environment, the reader is directed to the of work of R. J. McIntyre and J.C. Campbell
[21],[22].

Classical impact ionization gain equations are best comprehended with the aid of a
simple model. This model will help illustrate the robustness and limitations of these equations.
Assume the medium to be a simple slab of lightly doped semiconductor of width, W on the order
of a micron or more. An electric field across the semiconductor creates a depletion region across
the slab. Further increase in that field creates a high field impact ionization region as well. The
field points from right to left and current flows to the left. Such a scenario is illustrated in figure
3.3. This model is virtually identical to the impact ionization region within a PIN photodiode
under high reverse bias, many APDs, and the SIM. With such a model in place, conservation of
current allows the formation a differential equation that describes the electron and hole current
density at any position x within the semiconductor. For electrons,

$$\frac{d J_n}{dx} = \alpha(x)J_n(x) + \beta(x)J_p(x)$$ \hspace{1cm} 3.6

and for holes,

$$-\frac{d J_p}{dx} = \alpha(x)J_n(x) + \beta(x)J_p(x).$$ \hspace{1cm} 3.7

These equations further assume that no current is generated in the depletion region from optical
generation of electron hole pairs. This constrains the current entry and exit points to the right
and left sides of the diode. Such a scenario is quite realistic in the case of the SIM and many types of APDs. The SIM uses pure electron injection into a high field to create gain and in this way no optical generation is required. The structure of some APDs such as those that implement a Separate Absorption and Multiplication (SAM) structure enhance device performance by injecting a single carrier into the multiplication region of the diode. So for many practical cases, and especially for the case of the SIM, such an assumption is quite practical.

Figure 3.3: An ideal slab of semiconductor medium with uniform electric field, a width (W) larger than 1 micron. This slab illustrates the current increases of electrons (J_n) and holes (J_p) as they traverse the impact ionization region.
If we further assume a pure electron injection scenario like the SIM, it then follows that

\[J_p(W) = 0 \]

and that

\[J = J_n(x) + J_p(x) = J_n(W) \] \hspace{1cm} 3.8

Substituting this into the above differential equation for electron density, it becomes

\[\frac{dJ_n(x)}{dx} - \{\alpha(x) - \beta(x)\}J_n(x) = \beta(x)J_n(W). \] \hspace{1cm} 3.9

This is an ordinary differential equation and can be solved in typical fashion provided that the

integrating factor \(\exp\left[-\int_{0}^{x} (\alpha - \beta)dx'\right] = \exp[-\phi(x)] \) be used to take care of the \(\alpha(x) \) and \(\beta(x) \) functionalities. Using this integrating factor and integrating the length of the intrinsic region from 0 to \(W \), electron current density becomes

\[J_n(x) = \frac{\int_{0}^{x} \beta(x)J_n(W) \times \exp\left[-\int_{0}^{x} \{\alpha(x') - \beta(x')\}dx'\right]dx + J_n(0)}{\exp\left[-\int_{0}^{x} \{\alpha(x') - \beta(x')\}dx'\right]} \] \hspace{1cm} 3.10

Gain for pure electron injection is defined as \(M_n = \frac{J_n(W)}{J_n(0)} \). Thus,

\[M_n = \frac{J_n(W)}{J_n(0)} = \frac{1}{\exp\left[-\int_{0}^{W} (\alpha - \beta(x))dx - \int_{0}^{W} \beta(x)\exp\left[-\int_{0}^{x} (\alpha(x') - \beta(x'))dx'\right]dx\right]}. \] \hspace{1cm} 3.11

Equation 3.11 can be further simplified using integration by parts \(\int AdB = AB - \int BdA \) on the second term in the denominator. In this case

\[-\int_{0}^{W} \beta(x)\exp\left[-\int_{0}^{x} (\alpha(x') - \beta(x'))dx'\right]dx = \exp\left[-\int_{0}^{x} (\alpha(x')dx'\right]\exp\int_{0}^{x} \beta(x')dx' \] \hspace{1cm} (A)

\[+ dB \] \hspace{1cm} (dB)
In this fashion the final expression for electron injection gain is derived as

\[
M_n = \frac{1}{1 - \int \alpha(x) \exp \left[- \int \alpha(x')d\nu \right] dx}.
\] \hspace{1cm} 3.13

The solution for hole injection is quite similar and shown here as

\[
M_p = \frac{1}{1 - \int \beta(x) \exp \left[\int \beta(x')d\nu \right] dx}.
\] \hspace{1cm} 3.14

In the case of the SIM, the gain equation for electron injection can be further simplified provided that \(\alpha >> \beta \) and \(\alpha \) be constant. The former is true for silicon while the latter depends on the device structure. Since ionization coefficients are field dependent, further simplification of equation 3.14 would only be of significant use if the field within the multiplication region is uniform. The lightly doped EPI layer of the SIM provides a fairly uniform field. Under these conditions,

\[
M_n = \frac{1}{1 + \frac{\alpha}{\alpha - \beta} \left[\exp(-x(\alpha - \beta)) \right]^w_0} = \frac{(\alpha - \beta) \exp(W(\alpha - \beta))}{\alpha - \beta \exp(W(\alpha - \beta))}.
\] \hspace{1cm} 3.15

and

\[
M_p = \frac{1}{1 + \frac{\beta}{\beta - \alpha} \left[\exp(-x(\beta - \alpha)) \right]^w_0} = \frac{(\beta - \alpha) \exp(W(\beta - \alpha))}{\beta - \alpha \exp(W(\beta - \alpha))}.
\] \hspace{1cm} 3.16
Since $\alpha \gg \beta$

\[M_n \approx \frac{\exp(W\alpha)}{1 - \frac{\beta}{\alpha} \exp(W\alpha)}. \] \hspace{1cm} (3.17)

From this we notice a feedback factor β/α. As β/α approaches unity, the diode breaks down at lower voltages. In the extreme case where $\beta = 0$,

\[M_n = \exp\left(\int_0^W \alpha dx\right) = \exp(\alpha W). \] \hspace{1cm} (3.18)

Figure 3.4: Multiplication gain M versus multiplication length for pure electron injection for various α/β values are used to demonstrate its effect on the avalanche breakdown curve [3].
If such were the case, the diode would never breakdown. Rather, gain would increase exponentially with αW. Figure 3.4 plots gain against α for several different values of α/β. As gains turn sharply upward, it becomes uncontrollable because a slight variation in field will cause drastic changes in gain. Notice that as α/β approaches unity the amount of controllable gain that can be produced greatly decreases. This is caused by feedback impact-ionization of secondary carriers as they in turn create their own constituent carriers. Once again, the disparity between electron and hole ionization coefficients gives silicon a most advantageous maximum usable gain over many other semiconductors.

3.5 Ionization Coefficient Measurement in Silicon

As shown earlier in this chapter, silicon’s complex band structure and disparity between electron and hole ionization energies makes it difficult to accurately predict field dependent ionization coefficients. A significant amount of effort has been expended over the past several decades to produce precise silicon ionization energies through theoretical and empirical means.

Since report of avalanche behavior in semiconductors [29], models for breakdown in silicon have sought to accurately predict ionization coefficients. Breakdown initiated by electrons can be derived by equation 3.13 in the form seen below:

$$1 - \left(\frac{1}{M_n}\right) = \int_0^L \alpha(x) \exp\left[-\int_0^x (\alpha(x') - \beta(x')) dx'\right] dx.$$ \hspace{1cm} (3.19)

Assuming that $\alpha \approx \beta$, and effective ionization coefficient α_{eff}, can be defined such that $\alpha \approx \beta = \alpha_{\text{eff}}$. Then at breakdown M_n becomes large and the above equation simplifies into
\[\int_{0}^{\infty} \alpha_{eff} \, dx = 1. \] \hspace{1cm} 3.20

Equations for \(\alpha_{eff} \) then become easier to fit to known results. Chynoweth’s law [32] gives one of the early relations to ionization as

\[\alpha_{eff} = a \exp(-b / E), \] \hspace{1cm} 3.21

where \(a \) and \(b \) are constants and \(E \) is the electric field. Fullop [33] gives another relation to data as

\[\alpha_{eff} = CE^g, \] \hspace{1cm} 3.22

where \(C \) and \(g \) are constants. One major problem with such a scenario is the assumption that ionization coefficients are equal in silicon at breakdown. While this may be fairly accurate at very high fields, it does not accurately predict multiplication in lower fields. Others researches felt confident that as long as the electron and hole ionization coefficients were within an order of magnitude, the fit would be good enough. However, Overstraeten and De Man’s [34] work just a few years later showed that indeed ionization coefficients differed by more than an order of magnitude. Despite these setbacks, equation 3.12 in many cases is quite valid. All such theoretical models involve solutions of the Boltzman transport equation assuming different energy distributions of carriers.

Physical measurement of ionization coefficients has been reported for PIN junctions, abrupt junctions [35] and linearly graded junctions [36]. The most ideal and precise of these medium of measurement is the PIN structure of known structure and doping. This structure is also the most difficult to fabricate, but advances in epitaxial growth technologies make such a medium fairly available. The low doping and relatively large width of the intrinsic structure sandwiched by a highly doped n and p region allow for a uniform approximation of the field.
This structure is seen in figure 3.5. When the diode is reverse biased below critical fields for impact-ionization, light is shown into either the N+ or P+ doped sides of the diode depending on whether electron or hole ionization coefficients are to be measured. In the case of electron measurement, light shines onto the P+ doped side of the diode. Provided a suitable wavelength for the semiconductor bandgap is chosen, electron hole pair generation occurs sufficiently close to the P+ region so that holes are swept into the P+ region without ionizing.

Figure 3.5: Measurement of pure electron injection and impact ionization in a PIN photodiode to accurately measure ionization coefficients under different fields.
This presents a most advantageous scenario of pure electron injection. The diode is then reverse biased to a low voltage below the critical field. A constant intensity light source injects electrons into the semiconductor where they traverse the width of the lightly doped intrinsic structure to the N+ side and are collected. This permits an accurate reading of photo induced electron current at unity gain. With the photo-intensity remaining constant, the diode is then biased to different voltages and the electron current is again recorded for each bias level. The same procedure is valid for holes provided hole current is measured and illumination is on the N+ doped side of the diode. Because the lightly doped intrinsic layer provides a uniform electric field within the diode, the applied bias voltage are intrinsic layer width are all that is needed to accurately calculate the field. This structure is ideal for measurement of the ionization coefficients using the ionization equations developed earlier in the chapter. This is mainly the case because the ionization coefficient PIN diode is merely a continuation of the PIN diode used in deriving the equations. Stillman and Wolfe show that the following relations exist \[37\] to solve for ionization coefficients.

\[
\alpha_n(E) - \beta_p(E) = \frac{1}{W} \ln \left(\frac{M_n(V)}{M_p(V)} \right),
\]

3.23

substituting equation 3.15 and 3.16 into 3.23 yields

\[
\alpha(F) = \frac{1}{W} \left(\frac{M_n(V) - 1}{M_n(V) - M_p(V)} \right) \ln \left(\frac{M_n(V)}{M_p(V)} \right).
\]

3.24

For holes a similar equation exists

\[
\beta(F) = \frac{1}{W} \left(\frac{M_p(V) - 1}{M_p(V) - M_n(V)} \right) \ln \left(\frac{M_p(V)}{M_n(V)} \right).
\]

3.25

where the bias voltage \(V = FW \). Thus, the intrinsic purity of the multiplication region is critical. Provided it is pure, the region will deplete almost immediately with very little bias. Continuing
improvements in epitaxial growth purity make this ideality more of a reality. In this fashion, ionization coefficients at different fields can be accurately recorded.

3.6 Impact-Ionization Response Time

The manner in which different carriers behave during impact ionization has a significant effect on the overall speed of a device. The ionization ratio between electrons and holes is K, where $K = \frac{\beta}{\alpha}$. Semiconductors with a small K experience shorter carrier transit time within a high field region because impact ionization events are dominated by a particular carrier. This is best illustrated by a best and worst case scenario. For a best case scenario, consider a semiconductor where only electrons ionize.

If only electrons initiate impact ionization, $\beta = 0$ and $K = 0$. Impact ionization events caused by an electron entering the multiplication region of this semiconductor are illustrated in figure 3.6 a). Because holes never create impact ionization events of their own, it becomes evident that the time required for the ionization event to pass through the multiplication region is the time required for an electron and hole to traverse the region. Because the transit time across the region is independent of the number of ionization events that take place, there is no gain-bandwidth limitation due to ionization. Contrast this to the semiconductor seen in figure 3.6 b) where $\alpha = \beta$ or $K = 1$. In such a case, each electron creates secondary electron hole pairs which in turn create secondary electron hole pairs of their own and the ionization process is self sustaining.

In reality, semiconductors have ionization coefficients that lie between the two examples given above. Since ionization events triggered purely by a single carrier have no effect on gain-bandwidth, there must be some extent to which a semiconductor with a significant difference
between electron and hole ionization coefficients can produce a moderate gain with little or no significant effect on gain-bandwidth. This is indeed the case [4]. Emmons shows that provided that the DC multiplication gain $M < \alpha/\beta$, such multiplication does not effect the gain-bandwidth of the device. When $M > \alpha/\beta$, gain bandwidth follows equation 3.26 below

$$M(\omega) = M_0 \left[1 + \omega^2 M_0^2 \tau_i^2\right]^{1/2}.$$ \hspace{1cm} 3.26

Figure 3.6: These figures illustrate the time difference for a small ionization event to completely traverse the depletion region where a) only electrons cause ionization events and b) where electrons and holes are equally likely to cause ionization events.
In this equation τ_1 corresponds to the effective transit time and is approximated by $\tau_1 = N(\beta/\alpha)\tau$, where N is a number that varies slowly from 1/3 to 2 as β/α varies from 1 to 10^{-3}. τ is the transit time equal to W/v_s where W is the width of the avalanche gain region and v_s is the saturation velocity. Plotting this equation for various gains and ratios of β/α against the normalized 3 dB cutoff gives the plot shown in figure 3.7. Figure 3.7 uses equation 3.26 to further illustrate the effect that a large or small K have on bandwidth. Requirements for a high-speed, responsive avalanche device include a large disparity between electron and hole ionization coefficients, a small multiplication region, and high carrier saturation drift velocity.

Figure 3.7: Avalanche multiplication 3dB frequency response limits due to differences in ionization coefficients of electron and holes [4].
3.7 Multiplication Noise

Just as a low ionization ratio improves the overall gain bandwidth of impact ionization based devices, it also decreases the noise generated by such events. When both electrons and holes undergo impact ionization, they create the regenerative feedback mechanism illustrated in figure 3.6 b). Lower feedback is desirable as it limits the number of carriers that can create the random, non-deterministic noise generated by impact ionization known as excess noise.

Because of its random, non-deterministic nature, some carriers undergo few impact ionization events while passing through a multiplication region while others undergo far more than the average. This wide distribution of possible gains from individual carriers causes the square of the average gain $<M^2>$ to be somewhat smaller than the mean square gain $<M^2>$. This is significant as Webb and McIntyre [5] point out that the excess noise factor F can be defined as

$$ F = \frac{MM^2}{MM^2} \cdot \frac{M}{M^2} \cdot \frac{M}{M^2} \cdot \frac{M}{M^2} $$

Thus F is a ratio of the actual noise caused by the random and haphazard nature of impact ionization to a deterministic process where carriers undergo equal ionizations. More light is shed on possible methods to minimize excess noise by examining the following equations. For electron injection, excess noise factor is

$$ F_e = k_{eff} M_e + (2 - 1/M_e)(1 - k_{eff}) $$

and for hole injection

$$ F_h = k_{eff} M_h - (2 - 1/M_h)(k_{eff} - 1), $$

where M_e and M_h are respective electron and hole gain and

$$ k_{eff} = \int_{x_1}^{x_2} \beta M^2 dx / \int_{x_1}^{x_2} \alpha M^2 dx $$

3.27

Thus F is a ratio of the actual noise caused by the random and haphazard nature of impact ionization to a deterministic process where carriers undergo equal ionizations. More light is shed on possible methods to minimize excess noise by examining the following equations. For electron injection, excess noise factor is

$$ F_e = k_{eff} M_e + (2 - 1/M_e)(1 - k_{eff}) $$

and for hole injection

$$ F_h = k_{eff} M_h - (2 - 1/M_h)(k_{eff} - 1), $$

where M_e and M_h are respective electron and hole gain and

$$ k_{eff} = \int_{x_1}^{x_2} \beta M^2 dx / \int_{x_1}^{x_2} \alpha M^2 dx $$

3.28

3.29

3.30
and

\[
k_{\text{eff}} = \frac{k_{\text{eff}}}{k_1} \approx \frac{k_2}{k_1} = \frac{\int_{x_1}^{x_2} \beta M^2 dx}{\int_{x_1}^{x_2} \alpha M^2 dx} = \left(\frac{\int_{x_1}^{x_2} \beta Mdx}{\int_{x_1}^{x_2} \alpha Mdx}\right)^2.
\]

This last equation, the \(\frac{<M^2>}{<M>^2}\) term that defines excess noise factor, can be readily seen in \(k_2/k_1\). Notice from equations 3.28 and 3.29 that as \(k_{\text{eff}}\) or \(k'_{\text{eff}}\) approach a value of one, \(F_e\) and \(F_h\) approach \(M_e\) and \(M_h\). In such a case, the excess noise factor would be equal to the device gain. In like manner, as \(k_{\text{eff}}\) and \(k'_{\text{eff}}\) approach zero the excess noise factor approaches a value of \((2^{-1}/M_{eh})\). Thus excess noise caused by impact ionization is most reduced by semiconductor devices with a small \(K = \beta/\alpha\) value.

Figure 3.8: Excess noise factor as a function of gain for multiplication regions with varying ratios of ionization coefficients [5].

44
Reduction of excess noise is mostly a materials game. The excess noise factor, Fe is plotted by McIntyre in figure 3.8. Here again as noted in the previous section, operating at a low gain is most advantageous. Notice that for materials such as silicon, gains of 10 can be theoretically achieved without introducing significant excess noise such that silicon with a $K = (0.02 - 0.002)$ can operate at low gains as though $k = 0$. Engineering the multiplication region can also help reduce excess noise factor. Advances in epitaxial growth techniques have helped create Impact-Ionization Engineered (I2E) APDs. These devices reduce excess noise factor by making the impact ionization events more deterministic and by reducing hole ionization probability. The multiplication region of this diode is seen in figure 3.9 [6]. Notice the reduction in bandgap across the 100 nm multiplication region.

![Figure 3.9: The multiplication region of an I2E avalanche photodiode. By engineering the bandgap across the multiplication, excess noise is deterministically inhibited as secondary holes drift through progressively larger bandgap materials [6].](image)

45
As electrons begin to traverse the multiplication region from left to right, ionization energies in the wide bandgap semiconductor coupled with its short width inhibit impact ionization. As electrons continue to drift, they enter materials with lower bandgaps. This transition means that the electrons suddenly have ample energy to ionize secondary carriers. The primary and secondary electrons continue to drift through materials of progressively smaller bandgap while secondary holes drift through materials of progressively larger bandgap. Thus the progressive change in bandgap, coupled with the short ionization region fosters electron initiated multiplication while inhibiting hole initiate multiplication. This creates a more single carrier ionization effect and significantly reduces excess noise. An I^2E APD with a “centered well” Al$_{0.2}$Ga$_{0.8}$ As multiplication region exhibited excess noise factor equivalent to a semiconductor with $K = 0.1$ while operated at gains below 20 [6].

While silicon has a most excellent impact ionization ratio ($K = 0.02 - 0.002$) a recently explored alloy appears to be even better. During ionization Hg$_{0.7}$Cd$_{0.3}$Te exhibits pure electron ionization without generating holes. As stated earlier, no semiconductor exists with impact ionization ratios for $K = 0$. While this is true of all impact-ionization based mechanisms, Hg$_{0.7}$Cd$_{0.3}$Te is different because electrons ionize via ballistic ionization. Unlike impact ionization, ballistic ionization takes place in Hg$_{0.7}$Cd$_{0.3}$Te because the ionization energy of electrons is equal to the bandgap and the ionization energy of hole is twice the bandgap. This disparity coupled with uncommonly light electrons and heavy holes allows electron to generate secondary electrons during multiplication without ionizing holes [38]. Unlike impact-ionization, ballistic ionization is a deterministic, history dependant, non random process. In consequence of this condition, the square of the average gain $<M>^2$ should be equal or very close to equal to the mean square gain $<M^2>$ [39]. This appears to be the case as a device using ballistic ionization
called the Electron Avalanche Photodiode (EAPD) has been developed which exhibits a gain bandwidth greater than 2 GHz and an excess noise factor of 1.25 without dependency on gain. As pointed out in equation 3.18, pure electron ionization creates a region which never breaks down. This is turns out to be the reported situation [40]. This device does not appear to utilize so called “tunnel-impact ionization” which is another ionization process predicted in low bandgap materials [30]. While this device has only been verified experimentally, discovery of this alloy is exciting.

Studies have shown silicon to create the least excess noise during impact ionization. This is primarily due to the large disparity in the ionization coefficients of electrons and holes [34]. This disparity quenches a natural feedback mechanism found in III-V semiconductors. In III-V semiconductors ionization coefficients for electrons and holes are typically about the same. This low noise property makes silicon the best semiconductor for impact ionization gain. Since the SIM can accept current from a photodiode of any material, silicon is the viable and robust choice for impact ionization despite its inability to detect light past wavelengths of 1 um and lattice match with III-V semiconductors.

3.8 Conclusion

Current benefits supplied to society via impact ionization devices, is merit alone for the extensive quantities study that has been conducted semiconductor multiplication gain. Yet the equations, theories, and phenomena described in this chapter are not dead and things of the past. They are guide posts that point the way to improvements in current devices and development of new ones.
4 FUNDAMENTALS OF THE SIM

4.1 Introduction

The Solid-state Impact-ionization Multiplier (SIM) is an electronic device capable of producing impact ionization based current gain for a signal from an arbitrary current source. Other devices such as avalanche photodiodes (APDs) [41] and IMPact ionization Avalanche Transit-Time (IMPATT) diodes [42] also utilize impact ionization gain. The difference between the SIM and these devices is that current sources for APDs reside within the depletion region of the device itself. IMPATT diodes rely on an external voltage source to induce avalanche gain in the depletion region of the device. Consequently, a current source cannot be “wired up” to either of these devices and exhibit a steady-state current gain over unity. However, the SIM accomplishes this very purpose. Impact ionization based gain is attractive because it provides a low noise amplification solution to systems detecting small current signals. This is illustrated by the continued use and development of APDs for the detection of low light signals. APDs provide additional gain to a photocurrent generated within their depletion regions while operating below the noise floor of subsequent transistor based amplifiers (transimpedance amplifiers) used to convert current into readable voltage levels. Thus low light levels are detected that would be indistinguishable without the additional gain provided by the APD. The SIM operates in a similar manner. A current source feeds signal into the SIM where it is amplified and then fed into a transimpedance amplifier (TIA) for voltage readout. Potential
current sources compatible with the SIM include photodiodes made from any semiconductor (and thus sensitive to a large selection of light wavelengths) and charge collectors.

Initial or first generation SIM designs were fabricated on silicon substrates and then measured [43], [44], [45] to confirm that impact-ionization based gain is present in these devices. Photodiodes constructed from silicon and indium-gallium-arsenide (InGaAs) were connected to devices under test and exhibited significant current gain from photocurrent generated by visible and near infrared ($\lambda = 1300$ nm) light sources. Work done previously by Hong-Wei Lee [3] focused primarily on DC gain in first generation devices from a DC current injection source. Most applications envisioned for the SIM involve current pulse detection. Thus it was of interest to evaluate the frequency response of the SIM. This chapter investigates the parameters contributing to SIM frequency response. This naturally emphasizes the resistive and capacitive elements that establish the fundamental speed limitations for these first generation devices. This chapter will cover the theoretical SIM operation and also model calculated and measured frequency responses of first generation SIM devices.

4.2 Current and Voltage (IV) Characteristics of SIMs

An accurate explanation of the frequency response of the SIM best begins with a precise description of current versus voltage characteristics, from which a circuit model is developed. Throughout the progression of the first generation devices, current versus voltage plots were presented in several different papers [43],[44],[45] these papers reported general findings and theories that pertained to the location of impact-ionization within the SIM and the factors that contributed to gain in the SIM. In a more recent work [46], which is the basis for this chapter, a more thorough description is given. In harmony with that paper, this section discusses carrier
movement, carrier injection mechanisms at the device’s metal semiconductor barrier, and biases at critical nodes of the device. Figure 4.1 illustrates the structure of first generation SIMs. This represents a “vertical SIM” in which the high fields capable of impact-ionization are positioned vertically between the N+ well and grounded P+ substrate. The fundamental idea behind the SIM’s operation is that electrons are injected at the Schottky metal-semiconductor contact and drawn toward the positively biased voltage (V_{sim}) node connected to an N+ doped region. This N+ doped region is referred to as the electron collector. Electrons, injected at the input, move through a high, horizontal field region toward the N+ doped collector and a vertical field between the N+ doped collector and the P+ doped substrate. As electrons drift in this field, they undergo impact ionization leading to the creation of electron-hole pairs. Newly created, secondary electrons drift toward the low potential of the electron collector voltage, V_{sim}, while newly created, secondary holes drift toward the grounded P+ substrate called the “hole sink.” Drawing holes toward the “hole sink” instead of back toward the metal-semiconductor interface allows the SIM to achieve current gain. Without a hole sink, secondary holes would find no greater potential than the input node and drift toward it. In route to the input they would recombine with newly injected electrons and eliminate any net gain produced by the device. For operation with gain, the voltage at the metal semiconductor contact must be positive in relation to the grounded substrate. With the substrate acting as the most favorable potential for holes, secondary holes are drawn away from the metal semiconductor contact and towards the hole sink.

The semiconductor doping and structure illustrated in figure 4.1 represents the first SIM introduced. In reality, variations can be made to the device while maintaining the same operation principle. For example, “Surface SIMs” employ hole sinks on the surface of a
semiconductor substrate through p-type doping, creating regions offset to either side of the N+ doped region (electron collector). These “Surface SIMs” have already been demonstrated [44]. All SIM devices were made using epitaxial silicon wafers with a low-doped P- layer on top of a P+ substrate. Other possible variations include an N- doped epitaxial layer and a device optimized for the injection of holes instead of electrons. A significant variation made to second generation SIMs involves replacing the metal-semiconductor interface that comprises the input with a heavily N+ doped ohmic contact. First generation devices only used a Schottky contact input. The frequency response of the Schottky contact input is covered in this chapter while other advantages to an ohmic contact input are reserved for subsequent chapters. Variation of the above mentioned parameters requires further consideration of device geometry and operational voltages to account for changes in doping, depletion layers, and electric fields. However, for the sake of coherence, descriptions and measurements in this chapter consist of a first generation vertical SIM design in silicon with a P- type epitaxial layer. Developing accurate models for variations to this design should be straightforward and follow a similar structure.

Figure 4.2 shows a typical vertical SIM current versus voltage curve. Current is injected into the device using a reversed biased photodiode illuminated with a light source. This particular SIM has spacing d between the metal-semiconductor input and N+ collector of around 5 μm and is fabricated on a P- epitaxial layer of approximately 3 Ω-cm resistivity. The curve in Figure 4.2 shows the current out of the electron collector (I_{sim}) versus the voltage applied to this node (V_{sim}). These DC measurements are done using an HP/Agilent 4156 Source-Measure Unit, with the capability to bias and measure several voltage nodes simultaneously. This permits simultaneous measurement and further evaluation of current flow through the photodiode, the hole sink, and the electron collector.
Figure 4.1: First generation vertical SIM structure. This cross-sectional view of a device shows a P type epitaxial layer on a P+ substrate. The electron collector is the N+ doped region and the hole sink is the P+ doped substrate.

Figure 4.2: Graph showing I_{sim} versus V_{sim} for a vertical device built using a P type epitaxial layer on a P+ substrate. An illuminated silicon photodiode served to inject current into the SIM.
Analysis of the I_{sim} versus V_{sim} curve gives an idea of the carrier action within the SIM. Figure 4.2 shows three distinct operation regions for the device – first a region where there is very little current flowing through the electron collector, then a region in which the current increases very rapidly, followed by a region in which the current increases further but at a more gradual rate. Figure 4.3 illustrates these three distinct regions.

Figure 4.3: Representation of a model SIM current versus voltage curve with the 3 regions of interest labeled for discussion.
4.2.1 Region A

Figure 4.4 illustrates the SIM operation in region A. A constant negative voltage V_{pd} is applied to a photodiode to keep it reverse biased. The hole sink of the SIM is grounded and a positive voltage relative to ground reverse biases the collector to a voltage V_{sim}. Monitoring the currents flowing in or out of these voltage nodes manifests a current flow into the node at V_{pd} which is equal to the photocurrent being generated in the photodiode.

Current also flows out of the grounded hole sink, and virtually no current flows in or out of the electron collector. These currents indicate that holes generated in the photodiode move toward the negative V_{pd} node while electrons move toward the metal semiconductor input. Holes from the P+ doped hole sink move toward the metal semiconductor interface and are thermionically ejected under the metal-semiconductor barrier where they combine with electrons in the metal as illustrated in figure 4.4 (b). The floating voltage V_{ms} at the metal-semiconductor interface adjusts to allow for enough hole current to flow under the barrier (by changing Θ) to accommodate the incoming electron current flow from the photodiode. This means that V_{ms} must be negative in relation to ground and the Schottky contact at the metal-semiconductor interface forward biased. With the SIM operating in region A, there is no appreciable current flow into or out of the electron collector. Applying positive voltage V_{sim} depletes the P- doped semiconductor surrounding the N+ region and increases the electric field in these regions. Because the extent of the depletion region is less than the spacing d between the electron collector and metal-semiconductor contact, current injected at the metal-semiconductor contact has no effect on current through the electron collector.
Figure 4.4: Representation of carrier action in the SIM when operating in region A. (a) Carrier action and semiconductor depletion in a cross-section of a vertical SIM. (b) Band diagram representation of the metal semiconductor interface and carrier action.
4.2.2 Region B

Figure 4.5 illustrates the operation of the SIM in region B. V_{sim} reverse biases the pn junction which comprises the collector to a specific voltage V_{dep}. Monitoring of current flowing through these nodes shows that current flows into the V_{pd} voltage node equal to the photocurrent being generated in the photodiode, current flows out of the electron collector, and current now flows into the hole sink.

These currents maintain the following relationship: $I_{\text{sim}} = \text{current through the photodiode} + \text{current into the hole sink}$. These currents manifest the following carrier action: Holes generated in the photodiode move toward the negative V_{pd} node while electrons move toward the metal semiconductor interface and the floating voltage node V_{ms}. V_{sim} has now reached the point where the depletion region surrounding the electron collector has reached the metal-semiconductor interface. Consequently, holes are no longer drawn up from the hole sink and ejected under the metal semiconductor barrier. Rather (as illustrated in figure 4.5 (b)), electrons are thermionically ejected over the barrier and into the depletion region. By lowering Θ, the floating voltage V_{ms} at the metal-semiconductor interface adjusts to allow for electron flow over the barrier to equal the incoming electron current flow from the photodiode. This means that V_{ms} is now positive in relation to ground. The abrupt increase in current shown in figure 4.3 manifests the injection of current from the photodiode into the depletion region. While this clearly indicates that a substantial amount of photocurrent is injected into the depletion region, electron-hole recombination may still take place at the metal-semiconductor junction until the depletion region moves across a substantial part of the metal-semiconductor contact.
Figure 4.5: Representation of carrier action in the SIM when operating in region B. (a) Carrier action and semiconductor depletion in a cross-section of a vertical SIM. (b) Band diagram representation of the metal semiconductor interface and carrier action.
Electrons ejected over the metal-semiconductor barrier drift in the depletion region toward the electron collector. Finally, significant current flows toward this node. If the electric field is high in the depleted semiconductor surrounding the electron collector, impact ionization takes place creating electron hole pairs. Secondary electrons drift with injected electrons toward the electron hole collector, while secondary holes drift toward the hole sink. The magnitude of I_{sim} is then equal to $I_{\text{pd}} \times G$, where G is the current gain resulting from impact ionization. In like fashion, magnitude of current flowing into the hole sink is equal to $I_{\text{pd}} \times (G-1)$.

4.2.3 Region C

Figure 4.6 illustrates SIM operation in region C. V_{sim} is reverse biased above the voltage characteristic of region B (V_{dep}). Again the current flowing into the V_{pd} voltage node remains constant and equal to the photocurrent generated in the photodiode, current flows out of the electron collector, and current flows into the hole sink. The currents through the nodes maintain the same relationship that was true in region B: $I_{\text{sim}} = \text{current through the photodiode} + \text{current into the hole sink}$. Carrier action in region C is similar to what happens in region B. V_{sim} has now increased, however, increasing the strength of the electric field around the depletion region. Electrons injected into this region experience more impact ionization events and the current I_{sim} increases according to $I_{\text{sim}} = I_{\text{pd}} \times G$. Holes created through impact ionization are still drawn to the grounded hole sink.

Of note is the affect of increasing V_{sim} on the floating voltage V_{ms}. Recall that the metal semiconductor barrier adjusts to allow the current over the barrier to equal the current injected. Because the amount of current injected into the SIM by the current source determines V_{ms}, the voltage between V_{ms} and V_{sim} for a given input current remains constant and is given by V_{dep}. Therefore, increasing V_{sim} above V_{dep}, merely causes V_{ms} to rise according to $V_{\text{ms}} = V_{\text{sim}} - V_{\text{dep}}$.

59
V_{ms} varies with input currents, but for most conceivable applications this variation is relatively small compared to $V_{sim} - V_{dep}$. The effect of “locking down” the voltage difference between V_{sim} and V_{ms} has several important implications for the SIM. First, the lateral extent of the depletion region in the direction of the metal-semiconductor contact is constant d even as V_{sim} increases.

Figure 4.6: Representation of carrier action and semiconductor depletion in a cross-section of a vertical SIM when operated in region C.
Second, since the depletion region remains unchanged, the electric field profile also remains the same. Any additional impact ionization must then be due to the increased electric field between the N+ electron collector and the P+ substrate acting as a hole sink (vertical field). The third effect of “voltage locking” is that increasing V_{sim} beyond V_{dep} has no effect on the injection mechanism at the metal semiconductor and cannot raise or lower the barrier seen by carriers as they enter the SIM.

4.3 SIM Circuit Model and RC Frequency Response Limits

The current versus voltage characteristics described in the previous section shed light on several important factors that should be included in a circuit model for the SIM. These elements include: 1) the Schottky diode between the metal-semiconductor contact and the P+ doped hole sink, 2) a representation of the metal-semiconductor barrier that is dependent on the input current and whether V_{sim} is greater than V_{dep}, and 3) a current gain element between the hole sink and electron collector that can account for net impact ionization gain. In addition to these elements, the circuit model should include capacitive and resistive terms present with p-n junctions and metal to semiconductor contacts. Since SIMs have many characteristics in common with avalanche photodiodes, a common model for these devices [5] has been adapted, neglecting for now any temperature dependence for the device.

Figure 4.7 represents the circuit elements used to model the SIM. Included in this circuit is a model for a photodiode being used as the current source connected to the SIM. The model accounts for the connections between the three voltage nodes for the device. Between V_{ms} and the grounded hole sink, a diode is used to allow for current flow when V_{ms} is negatively biased compared to ground. In addition, a capacitor is added to represent the capacitance between the
metal-semiconductor interface and ground (including the contact pad necessary in real devices). A series resistance and space charge term is also included. Between the metal-semiconductor contact and electron collector (Vms and Vsim), the resistor Rbarrier is used to represent the metal semiconductor barrier that is current dependent and infinitely large when Vsim < Vdep. This is the barrier electrons see when injected into a depleted region between these nodes. The resistance values for this barrier are developed in the following Section. A capacitor is also included between the two nodes representing the capacitance between the metal-semiconductor contact and electron collector. Between the electron collector and hole sink (Vsim and ground) a dependent current source is used to represent the net impact ionization gain produced by the device. Parallel to this current source, a diode represents the reversed biased p-n junction between the electron collector and hole sink. Also parallel to the current source, a capacitor represents the capacitance between electron collector and ground (including contact pads). Finally a series and space charge resistance term is added between these two nodes. While this model does not take into account effects like carrier transit time and impact ionization multiplication delay times, it can provide a frequency response limit based on resistive and capacitive elements for the device. As will be seen, these elements are a significant factor in frequency response of current SIM designs.

Utilizing the circuit model in figure 4.7 to solve for the relationship between I_{sim} and I_{pd} at different operating frequencies ω, is fairly straightforward. However, the expressions for I_{sim} become quite muddled when including all of the elements found in the circuit model. Several approximations can be made to derive a solution that is physically insightful and accurate in most cases.
Figure 4.7: Circuit model for a SIM connected to a photodiode current source when Vsim is greater than the depletion voltage. I_3 represents the impact ionization gain mechanism dependent current source.

The first approximations neglect the series and space charge resistances in the case of R_{pd}, $R_{1,sc}$, and $R_{3,sc}$. In each of these cases, the series resistance is due to an ohmic metal-semiconductor contact and so should be quite low. The space charge resistance comes from a relatively large area contact over a thin depletion region and, so too, should be low. Typically series and space charge resistances of this type are less than 50 ohms. Compared to other elements in the SIM, these should have a very small effect on the overall response. The space charge term containing
the resistance $R_{2,s,sc}$ is not to be neglected as it is quite significant (~10,000 ohms) due to the large channel lengths and relatively short channel depths between the metal-semiconductor contact and electron collector. The second approximation made is that the capacitive term C_2 can be neglected compared to other capacitive terms and R_{barrier}. Given that this represents the capacitance between two nodes in a lateral direction on the surface of a wafer, this assumption should be valid. Given these approximations, relationships for I_{sim} and I_{pd} at given frequencies ω are written in terms of the floating voltage V_{ms}:

$$I_{\text{sim}} \approx \frac{V_{ms}}{R_{\text{barrier}} + R_{2,s,sc}} G,$$ \hspace{1cm} \text{(4.1)}

and

$$I_{pd} \approx \frac{V_{ms}}{R_{\text{barrier}} + R_{2,s,sc}} \left[1 + j \omega (R_{\text{barrier}} + R_{2,s,sc}) \right] C_1 + C_{pd}.$$

$$\text{(4.2)}$$

Dividing (1) by (2) a relationship for I_{sim}/I_{pd} is obtained.

$$\frac{I_{\text{sim}}}{I_{pd}} \approx \left[\frac{G}{1 + j \omega (R_{\text{barrier}} + R_{2,s,sc})(C_1 + C_{pd})} \right].$$ \hspace{1cm} \text{(4.3)}

The 3dB down frequency in which $\sqrt{\left(\frac{I_{\text{sim}}}{I_{pd}} \right)^2 - \left(\frac{I_{\text{sim}}}{I_{pd}} \right)^*} = \sqrt{1/2}$ is given by

$$f_{3dB} = \frac{\omega_{3dB}}{2\pi} \approx \frac{1}{2\pi (R_{\text{barrier}} + R_{2,s,sc})(C_1 + C_{pd})}.$$ \hspace{1cm} \text{(4.4)}

The simple relationship derived in (4.4) provides tremendous insight into the frequency response limits for the SIM. Succinctly, the dominant terms consist of the barrier resistance at the metal semiconductor interface and space charge resistance encountered by electrons between this interface and the electron collector. Since a Schottky metal-semiconductor barrier height is input current dependent, the barrier resistance or input resistance into the SIM and frequency response
manifest current dependencies as well. A derivation of the barrier resistance for this type of interface is given in the next Section.

The accuracy of these assumptions that lead to the derivation of equation 4.4 was verified by modeling the circuit in figure 4.7 in a Simulation Program with Integrated Circuit Emphasis (SPICE). The 3 dB frequency responses match with less than 1% discrepancy for a large range of component values. Because component values such as R_1 and R_3, were neglected or assumed to be small ($50 \,\Omega$) in the frequency response derivation, further simulations were needed to determine the extent to which these values could be realistically ignored before noting a substantial deviation from the calculated 3 dB frequency response. R_1 and R_3 typically represent contact resistances and space charge resistance seen by carriers. Consequently, initial values for R_1 and R_3 used in these simulations were small. However, because of possible space charge effects that occur at high gains, resistance values ranged as high as $10 \,\text{k}\Omega$ in the simulation. Assuming realistic values for C_1 and C_{pd} of 2 pf and 2 pf respectively, variations of R_1 and R_3 revealed a weighted two pole effect on frequency response. These poles are not evident in 4.4 due to simplifications intent on only revealing the most dominant pole, however, SPICE models reveal their existence. R_3 proved to be the dominant pole. Increases to R_3 similar to those mentioned in R_1 caused simulations to deviate substantially from the derived frequency response calculation. Increasing R_3 to $1 \,\text{k}\Omega$ caused 2% deviation and 55% at $5 \,\text{k}\Omega$. R_1 proved the second largest pole showing a 1% deviation on derived frequency response for 1k ohm and a 10% deviation at $10 \,\text{k}\Omega$. Changing the values of C_1 and C_{pd} can change the pole order dominance; however, the capacitive values were specifically chosen to reflect a realistic scenario. The main exception would be specifying the value of C_{pd}, which may exhibit substantial variation depending on the type and speed of photodiode being used. Use of a sufficiently large
photodiode will reduce overall bandwidth by causing the photodiode itself, and not the SIM, with a sufficiently large capacitance to become the dominant pole.

4.4 Metal-Semiconductor Barrier Resistance and Space Charge Resistance

Due to the important role the metal-semiconductor interface resistance plays in determining the frequency response of the SIM, a derivation of the resistance can be made for a vertical SIM with a Schottky contact on a P-type semiconductor. R_{barrier} is based on the thermionic emission of electrons over the barrier and is found by deriving a current versus voltage relationship that is barrier height dependent. Figure 4.8 illustrates the energy barrier for electrons between the metal-semiconductor contact and electron collector. This of course assumes that the semiconductor layer between the two nodes is a constant doping and completely depleted. As V_{sim} increases, the electron barrier height drops by $\Delta \Theta$ allowing more electrons over the barrier. The value for R_{barrier} can be found by determining the relationship between injected current and V_{sim}.

The current flowing between the metal-semiconductor contact and electron collector can be described as

$$I = I_0 e^{\Delta \Theta/kT} + I_d,$$

where k is Boltzmann’s constant and T the temperature [47]. The first term is related to electrons ejected over the barrier and the second term, I_d is due to current generation within the depletion region (dark current). The I_0 term found in 4.5 is the current that would flow over the barrier without any barrier lowering and corresponds to Θ. $\Delta \Theta$ is the amount the barrier is lowered by applying ΔV to the electron collector such that $\Theta_{\text{be}} = \Theta + \Delta \Theta$, as shown in figure 4.8.
The derivative of the current versus this barrier lowering can be written as

$$\frac{dI}{d\Delta \Theta} = \frac{(I - I_s)}{kT}. \quad 4.6$$

To obtain resistance over this barrier, the derivative of I versus the voltage applied to the electron collector is written as

$$\frac{dI}{dV_{\text{sim}}} = -\frac{dI}{d\Delta \Theta} \frac{d\Theta}{dV_{\text{sim}}}. \quad 4.7$$
To obtain $d\Theta / dV_{sim}$, a relationship between Θ and V_{sim} is made by examining the electric field in the region between the metal-semiconductor contact and the electron collector when the semiconductor between them is depleted. Figure 4.9 illustrates the electric field versus position.

As indicated in figure 4.9, the area under the electric field curve between 0 and W is equal to the height of the barrier Θ shown in figure 4.8 so that we can write
\[\Theta = \frac{qN_A W^2}{\varepsilon_s^2}, \quad 4.8 \]

where \(q \) is the electron charge, \(N_A \) the semiconductor doping level, and \(\varepsilon_s \) the permittivity in silicon. \(W \) represents the distance into the semiconductor that the maximum barrier is positioned. \(W \) will be the same as the depletion depth for an unbiased Schottky contact at the point where the area between the nodes is first depleted (\(V_{\text{sim}} = V_{\text{dep}} \)). As \(V_{\text{sim}} \) increases further, \(W \) decreases in length, but in most cases the change in the length of \(W \) is small because the barrier height changes little to account for large changes in ejected current. \(V_{\text{sim}} \) is equal to the area under the electric field between \(W \) and \(d \), thus

\[V_{\text{sim}} = \frac{qN_A (d - W)^2}{\varepsilon_s^2}, \quad 4.9 \]

Using (4.8) and (4.9) the derivative for barrier height versus \(V_{\text{sim}} \) is

\[\frac{d\Theta}{dV_{\text{sim}}} = -\frac{W}{d - W}. \quad 4.10 \]

To account for changes in \(W \) with current, (4.5) and (4.8) can be used to derive the relationship

\[W = \sqrt{\frac{2\varepsilon_s}{qN_A}}\sqrt{\Theta} = \sqrt{\frac{2\varepsilon_s}{qN_A}}\sqrt{\frac{\Theta_{\text{bi}} - kT \ln \left(\frac{I - I_d}{I_o} \right)}{\Theta_{\text{bi}} - kT \ln \left(\frac{I - I_d}{I_o} \right)}}. \quad 4.11 \]

Inserting (4.11) into (4.10) we can derive the derivative for barrier height versus \(V_{\text{sim}} \) that has a current dependent term given by

\[\frac{d\Theta}{dV_{\text{sim}}} = \left(\frac{1}{d} \right) - \left(\frac{2\varepsilon_s}{qN_A} \right) \sqrt{\Theta_{\text{bi}} - kT \ln \left(\frac{I - I_d}{I_o} \right)} - 1. \quad 4.12 \]
Substituting the relationships from (4.6), (4.10) and (4.12) into (4.7) reveals

\[
R_{\text{barrier}} = \left(\frac{dI}{dV_{\text{sim}}} \right)^{-1} = \frac{kT}{I - I_d} \left(\frac{d - W}{W} \right) = \frac{kT}{I - I_d} \left\{ \frac{d}{\sqrt{\frac{2\varepsilon_s}{qN_A} \sqrt{\Theta_{bi} - kT \ln \left(\frac{I - I_d}{I_o} \right)}}} - 1 \right\}.
\]

4.13

Space charge must also be considered in the SIM. Space charge resistance is caused by the electric field reduction in a depletion region due to the presence of charge carriers. The field reduction can be expressed as \(\Delta E_m = \frac{I d}{2\varepsilon_0 \varepsilon_s \nu A} \), where \(E_m \) is the maximum value of the electric field in the depletion region, \(d \) is the spacing between the metal semiconductor contact and the electron collector, \(\varepsilon_s \) is the permittivity in silicon, \(\nu \) the electron drift saturation velocity, and \(A \) is the depletion region cross section area \([45]\). The equation indicates that with higher current flowing inside the diode, field reduction will become larger. The field reduction can also be realized as a corresponding voltage reduction equal to \(d\Delta E_m \). In this way the space-charge effect is represented by an effective space-charge resistance

\[
R_{\text{sc}} = \frac{d^2}{2\varepsilon_s \nu A}.
\]

4.14

The cross sectional area in the SIM device is estimated by the width of the depletion region in the direction perpendicular to the path between the metal-semiconductor contact and the electron collector, multiplied by the depth of the depletion region.

The magnitude of the two resistance terms (\(R_{\text{barrier}} + R_{\text{sc}} \)) as a function of input current into the SIM is verified by matching measured values with theoretical equations. Substitution of actual device parameters into (4.13) and (4.14) yields a theoretical representation of \(R_{\text{barrier}} + R_{\text{sc}} \) versus input current as shown in figure 4.10. For this case, \(d = 4 \) um, P type doping equaled 3 x
10^{15}, and the metal-semiconductor barrier equaled .45 eV [48] (nickel silicide on P type silicon). A dark current (I_d) of approximately 1 nA was used to represent the real device in (4.13). This dark current term dominates the resistance curve at low currents. At high currents, space-charge resistance dominates as R_{barrier} drops below R_{sc}. Calculations for the space-charge resistance of the device used in figure 4.10 yield a value of $R_{\text{sc}} = 12 \, k\Omega$. Measured $R_{\text{barrier}} + R_{\text{sc}}$ for the device with the same parameters are also shown in the figure to verify theory. Measurements were made using an HP/Agilent 4156 with a grounded connection to the metal-semiconductor contact while the contact to the electron collector is swept in voltage. The derivative of the measured current versus swept voltage is then used to calculate the total resistance for a given current. The calculated and measured values shown in figure 4.10 match very closely confirming that thermionic barrier emission and space charge are the dominant resistance effects in this particular SIM design (Schottky contact injection on P type semiconductor).

The implications of these resistance terms on the frequency response of this SIM design can be shown by substituting (4.13) and (4.14) into (4.4), resulting in

$$f_{3dB} \approx \frac{1}{2\pi \left(\frac{kT}{I-I_d} \left(\frac{d-W}{W} \right) + \frac{d^2}{2\varepsilon_y \nu A} \right) \left(C_1 + C_{pd} \right)}.$$ \hspace{1cm} (4.15)

The frequency response at low input currents is expected to exhibit a linear dependence on input current. Given the large barrier resistances, frequency response is also limited as shown in the following section.
Figure 4.10: $R_{\text{barrier}} + R_{\text{sc}}$ resistance versus input current between the metal-semiconductor and electron collector. The theoretical curve is calculated using (4.13) and (4.14) assuming a vertical SIM device made using a P type epitaxial layer, Schottky injection contact, and a spacing d equal to 4 microns. Measured values correspond to fabricated SIM devices with those parameters.

4.5 Frequency Response Measurement

The test setup shown in figure 4.11 measures the frequency response of first generation SIM devices. In this setup, a sinusoidal signal drives an analog transmitter laser source ($\lambda = 850$ nm), allowing a single harmonic rather than multi-harmonic signal to be injected into the SIM and used for frequency response evaluation. The laser passes through an attenuator before
reaching a photodiode. This provides a precise method to reduce electron photocurrent injected into the SIM and facilitates the testing of device bandwidth at different but quantifiable current injection levels. A Keithley 2400 Voltage-Measure Unit keeps the PIN photodiode reverse-biased at all times and gives an accurate average measurement of the AC plus DC current leaving the photodiode anode \((I_{pd}) \). The vertical and horizontal fields necessary for impact ionization and depletion are formed as a Keithley 2410 Voltage-Measure Unit reverse-biases the semiconductor between the electron collector \((V_{sim}) \) and hole collector (ground). Current is also monitored using the Keithley 2410 as it flows either through the electron collector \((I_{sim}) \) or hole sink \((I_{sub}) \). Electron current \((-I_{sim}) \) leaving the electron collector passes through a bias tee where the AC and DC current components are separated. AC electron current is fed into a Femto Current Amplifier acting as a transimpedance amplifier. This amplifier employs a virtual ground on its input so that none of the AC signal is quenched or diverted through the DC leg of the bias tee by having to pass through a high input impedance amplifier.

The current amplifier’s constant transimpedance gain of \(5 \times 10^4 \) V/A provides a substantial voltage signal that is averaged over several cycles to provide accurate measurement and analysis on an oscilloscope. 3dB bandwidth is then determined as the frequency where the voltage signal on the oscilloscope falls to \(\sqrt{1/2} \) of its maximum value.

An HP/Agilent C-V Plotter 2480A, measured capacitance parameters necessary to compare measured to predicted bandwidths. SIM device terminals were biased to voltages conditions similar to those found in actual operation. For instance, depletion and pad capacitances between the electron collector and hole sink were measured by biasing the junction to potential identical to actual device performance before recording capacitance. Testing
included measurement of stray and additional capacitances caused by probes and substrate electrodes.

Figure 4.11: Test setup used to measure the frequency response of SIM devices.
Figure 4.12: 3dB frequency response versus injected input current. Theoretical values were generated from equation 4.15 and measured values come from measurements on the same SIM device used to generate figure 4.11 (P type semiconductor with Schottky injection).

Frequency response testing revealed a bandwidth dependant upon the amount of photocurrent injected into the SIM as expected from (4.15). Using the setup illustrated in figure 4.11, several frequency response measurements were made on actual SIM devices at progressively lower injected currents. The SIM was biased to a V_{sim} voltage greater than V_{dep} so that the device was producing current gain. However, measured frequency responses were independent of the gain produced in the SIM. This confirms that frequency response limitations for this specific SIM design are due to RC effects and not impact ionization delay times. The different values of injected current and actual device parameters including measured
capacitances \((C_1 + C_{pd} = 6.8 \text{ pF})\) were then used in the calculation frequency response using (4.15). The total capacitance value also includes stray and additional capacitances from the test probes used in the frequency response measurement. Actual and predicted values are matched in figure 4.12. The specific SIM device used was the same one whose measured resistance values are shown in figure 4.10 with dopings and geometry described in the previous sections. The close match in both the frequency response magnitude and dependence versus input current confirms the accuracy of the circuit model describing the SIM as well as the effects of the metal-semiconductor contact barrier and space charge on device operation.

4.6 Conclusion

This chapter has explored the frequency response of first generation, vertical structure SIM devices, and presented a theoretical model for response limits based on resistance and capacitance parameters. Testing confirms the results presented from theoretical models. While frequency response of these devices is significantly hampered by input current levels, the developed models coupled with an understanding of carrier action within the device laid forth in this chapter provide a clear path and solution to increasing the frequency response for redesigned SIMs. Whether, such a solution will prove a detrimental to some of the SIMs other desirable features will be addressed in subsequent chapters.
5 OHMIC CONTACT INJECTION NODE SECOND GENERATION SIMS

5.1 Introduction

In the first generation SIM, current from an external source was injected through a Schottky contact as explained in Chapter 4. This chapter introduces a second generation SIM design that utilizes a pn junction injection contact. This design makes the devices more consistent to fabricate in several ways. Schottky contact characteristics can be highly dependent on semiconductor surface and metal deposition conditions [49]. Using a pn junction injection contact means that the points of injection and collection are both identical junctions. Consequently, doping processes can be refined and optimized in tandem. Most importantly, the Schottky contact SIM also suffers from frequency response limitations at low input currents due to thermionic emission over the Schottky barrier. This chapter evaluates the frequency response limits for the pn junction injection ohmic contact SIM or second generation SIM which was investigated in the hopes of improving the SIM’s frequency response at low input currents. The pn junction design while failing to improve frequency response in itself, provides an easily fabricated device that can be optimized to reduce space charge resistance by altering the doping profile of the device.
5.2 Ohmic Contact Electron Injection

Discovering the Schottky barrier input resistance in first generation SIMs provides understanding on how such an obstacle can be overcome. Second generation SIMs seek to overcome this by employing an ohmic contact at the metal silicon interface. In this way, the work functions of the heavily N+ doped semiconductor and metal fix the barrier height such that the barrier into the semiconductor is pinned and cannot change with fluctuations in current as electrons tunnel into the semiconductor (figure 5.1).

![Diagram of an ohmic contact](image)

Figure 5.1: Illustration of an ohmic contact. This contact is used on the injection node of the second generation SIM to effectively inject electrons into the semiconductor.

The second generation SIM is fabricated on a p+ substrate with a p- epitaxial layer as seen in figure 5.2a. Electrons are injected into the SIM through an n+ well. In operation, a strong positive bias at the collector electrode reverse biases the junction between the n+ well and the p doped regions creating a depletion region which grows toward the substrate and input electrode.
Electrons injected into the SIM enter the depletion region and drift toward high-field, multiplication region near the positively biased electrode (figure 5.2b). Ionized electrons produced in the multiplication region are collected by the positively biased N+ well while holes are collected in the p+ substrate. Thus the second generation SIM design also prevents holes...
from drifting toward the input electrode and recombining with incoming signal electron. This collection of holes at the substrate occurs due to the favorable potential seen by the holes as they near the hole sink (figure 5.2c).

5.3 Similarities and Differences Between the SIM, MOSFET and BJT

Replacing the earlier Schottky metal contact with an ohmic metal contact produces a structure similar to a Bipolar Junction Transistor (BJT) or Metal Semiconductor Oxide Field Effect Transistor (MOSFET) in that the injected electrons encounter an n-p-n doping profile as they drift toward the collector electrode. However, several differences exist that make the SIM unique from either the MOSFET or BJT. These differences include their mode or operation, doping profiles, and device structure.

Under operational bias, the BJT and SIM have similar band profiles. In an NPN BJT, electrons leave the emitter by diffusing through a narrow base region into the collector. This base region is heavily doped to reduce hole recombination in the emitter and quite narrow to reduce the number of electrons lost due to recombination in the base. The high base ensures that it is never significantly depleted from the large depletion region of the collector. While impact ionization is achievable, though not desirable, in BJTs, no gain is possible because the base is so narrow and confined that holes are not effectively drawn away before recombining with other electrons. BJTs are not surface devices. Thus when examining the cross-section of a BJT, it is evident that electrons typically move in a vertical fashion from the surface and into the bulk of the semiconductor. In this way, electrons avoid any detrimental effects caused by the surface. In the case of the SIM, region between input and collector which constitutes the base is large in
nature, lightly doped, and thus significantly depleted by the collector. Electrons also move across the device surface from the input to the collector.

The doping profile encountered in a MOSFET is identical to that used in the fabrication of SIMs. Consequently, the wafers used to fabricate SIMs were originally designed for fabrication of MOSFETs. The lightly doped epitaxial region in the MOSFET allows for quick inversion of the channel between the source and drain while in the case of the SIM is allows formation of a large, fairly uniform, high field region ideal for impact ionization. In an ideal sense, a MOSFET could act as a SIM if it did not have a gate. The source could act as the input, the drain could act as the collector and the substrate could act as the hole sink necessary to draw holes out of the high field region. However, most discrete MOSFETs which have geometries large enough to handle the high fields necessary for impact ionization only have three terminals in the packaging because the substrate and source are tied together internally.

While impact ionization is possible in BJTs or MOSFETs, it is often called avalanche breakdown rather than avalanche gain because the nature of impact ionization can damage the device.

5.4 Second Generation Frequency Response

The behavior of the voltage on the input electrode is of critical importance in evaluating the second generation device frequency response. Because of the high resistance exhibited by external current sources such as photodiodes, the input electrode voltage cannot be externally biased and is allowed to float in accordance to the level of current being injected into the device. In the first generation Schottky based SIM, this floating voltage was determined using a model of thermionic emission passing over a barrier.
In order to accurately model the behavior of the input electrode of second generation SIMs, the quasi-Fermi level in the depletion region of the SIM must be considered. This is because changes in current produce fluctuations in the quasi-Fermi level as charge is introduced to the region. Consequently the voltage at the floating input node must be determined by integration of the total field across the depletion region plus the integral of the charges introduced into the depletion region after current injection [20]. This process, while rather difficult to accomplish manually, is aided by the use of simulation and modeling tools from ATLAS, the device simulation framework program by Silvaco.

By doing so it becomes readily evident that no improvement in frequency response is manifest by introducing a pn junction input to the SIM. While the ohmic contact of the second generation SIM removes the metal semiconductor barrier electrons see as they enter the semiconductor, creation of the ohmic contact merely moved the barrier further into the semiconductor. The voltage at the barrier floats in similar fashion to the barrier formed by a metal-semiconductor junction. While the following derivation is different from the first generation SIM, figure 5.3 helps to illustrate the similarity in the electron barrier problem between the two devices by comparing the first and second generation SIM conduction bands. Notice that in each case, electrons injected into the SIM face a potential barrier. In the case of the second generation SIM, a voltage shift, ΔV, at the injection point into the depletion region is related to the quasi Fermi energy shift (ΔE_F) of the depletion region by

$$\Delta V = \frac{\Delta E_F}{q}, \quad \text{5.1}$$

where q is electron charge. As the carrier density within the depletion region changes, a corresponding voltage shift is produced due to the Fermi energy adjustment.
Figure 5.3: The difference in the conduction band structures of the a) Schottky contact SIM and b) the ohmic contact SIM. While the input resistance caused by the Schottky contact is eliminated, the built-in voltage Θ_{bi} moves to the transition between the N+ doped region and the p- epitaxial region between the injection node and the collector.
The carrier density in a depletion region is dependent upon the current, \(I \), through that region by

\[n = \frac{I}{A \cdot \nu \cdot q} \]

where \(A \) is the cross-sectional area of the depletion region and \(\nu \) is the carrier velocity through this region. The carrier density can also be defined as a function of the Fermi level by

\[n = N_c \exp\left(\frac{(E_c - E_F)}{kT}\right) \quad \text{or} \quad E_c - E_F = -kT \cdot \ln\left(\frac{n}{N_c}\right), \]

where \(N_c \) is the density of states at the conduction band edge, \(k \) Boltzmann’s constant, and \(T \) temperature.

Combining (5.2) with the relationship for carrier density yields

\[E_F = E_c + kT \cdot \ln\left(\frac{I}{(N_c \cdot A \cdot q \cdot \nu)}\right). \]

Since injected current at the input naturally varies, there is a change in the Fermi energy. If the current changes from \(I_1 \) to \(I_2 \), the change in the node voltage can be found by combining (5.1) and (5.3) to obtain

\[\Delta V = \left(\frac{kT}{q}\right) \cdot \ln\left(\frac{I_1}{I_2}\right). \]

The shift in voltage at the injection node for a given input current is illustrated in figure 5.4 and is directly related to the frequency response of the SIM.

This change in node voltage with input current results in an effective input resistance existing at this node. This resistance is calculated by taking a derivative of equation 5.4

\[R_s = \frac{dV}{dI} = \frac{kT}{(qI)} \]

When combined with the depletion layer and current source capacitance, a charging time constant, \(\tau \), is computed where

\[\tau = R_s C_d = C_d \frac{kT}{(qI)}. \]
Here C_d is the combined capacitance at the injection node. In the case of frequency response evaluations C_d was dominated by the capacitance of the photodiode current source so $C_d \sim 20$ pF. The time constant τ represents the time delay for a change in the input current to change the output current of the SIM. The large nature of this time constant limits the frequency response of the second generation SIM to a frequency response similar to first generation SIMs. Thus when R_Δ is greater than the contact resistance it will have a detrimental effect on overall frequency response. The results predicted by equation 5.6 for the ohmic contact based second generation devices are similar to those of the first generation Schottky devices which also had a frequency response that scaled by the inverse current. Table 5.1 compares these results. Notice that they are similar in frequency limit with the pn junction device being slightly higher.
Table 5.1: Comparison of frequency limit of the Schottky contact SIM to that of the pn junction SIM.

<table>
<thead>
<tr>
<th>Current (μA)</th>
<th>3dB Frequency (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PN Junction SIM</td>
</tr>
<tr>
<td>0.1</td>
<td>40</td>
</tr>
<tr>
<td>1.0</td>
<td>240</td>
</tr>
<tr>
<td>3.0</td>
<td>440</td>
</tr>
<tr>
<td>6.0</td>
<td>540</td>
</tr>
</tbody>
</table>

5.5 Fabrication and Testing

The second generation SIM was fabricated in silicon and modeled using ATLAS. Selberherr’s model for impact ionization and the Shockley-Read-Hall recombination model were implemented to measure the ionization and carrier recombination events in regions of interest. Fabrication began with silicon epitaxial wafers with an approximately 3 Ω·cm 10μm thick p-type epitaxial layer and 0.01Ω·cm in the p-type substrate. A 30nm layer of silicon dioxide was thermally grown on the silicon surface in a tube furnace. Wells of varying widths (30–360μm) and spacing (3–9μm) that comprise the injection and collection contacts were then patterned with photoresist on the oxide and sent for heavy phosphorus dose implants of 1e14 cm⁻² at 30, 60 and 30 KeV. Wafers were then activated in a heatpulse 610 rapid thermal processor at 1050 C in a forming gas environment for 30 seconds. Front and backside aluminum thermal evaporation served to create a substrate contact and individual leads to devices. Wafers were then annealed in
a forming gas environment for 5 min at 450 C to produce low-resistance ohmic contacts to heavily doped regions.

The current versus voltage relationship and current gain were measured in a similar manner as first generation device in chapter 2 using a silicon photodiode (Perkin Elmer VTP1012) as a current source and biased using an Agilent 4156 semiconductor parameter analyzer.

Gain (M) was calculated in like manner as well where

\[M = \frac{I_{\text{output}} - I_{\text{dark}}}{I_{\text{input}}} \]

Frequency response testing is similar to the testing of first generation devices as explained in Chapter 3. It consisted of wiring a reverse biased photodiode to the injection node of the SIM. A laser emitting 870 nm light (Fiberlink XA-1000A-1) then illuminated the photodiode, injecting electrons into the SIM. An Agilent 33250A waveform generator modulated the laser. Source-meter units (Keithley 2400 and 2410) biased the SIM and photodiode while monitoring all currents entering and exiting the SIM. The SIM’s output signal was connected through a bias tee (Picosecond Pulse Labs 5530A) to a transimpedance amplifier (Femto HCA-100M-50K-C) converting the ac output into a voltage signal. This signal was analyzed and measured on an oscilloscope (Tektronix TDS 340A). The SIM was operated at an approximate gain of 3 as obtained by equation 5.7 for the measurements shown in figure 5.5. The 3dB frequencies versus various input currents are shown, and plotted along with a theoretical curve based on equation 5.6. As the plot indicates the match of theory to experiment well. These results are comparable and consistent to previous Schottky contact SIMs.
Figure 5.5: Measured 3dB bandwidth for the fabricated SIM, represented by the diamond points, over a range of current levels. The theoretical response predicted by Eq. 5 is shown as a solid line, with 20 pF used for the node capacitance. A bias of approx. 40 volts was used.

5.6 Device Operation

5.6.1 IV Characteristics

Figure 5.6a shows IV curve measurements for different input currents along with ATLAS simulations for equivalent devices. Notice that with the second generation SIM devices injected electrons do not recombine with holes and the metal-semiconductor interface until the area between the contacts is completely depleted. Rather a low bias on the collector is all that is necessary to sufficiently deplete a path whereby injected electrons then drift to the collector without undergoing recombination. This is easily observed in figure 5.6a by noticing that the output current quickly assumes the sum of leakage current and injected current instead of assuming only the leakage current until sudden spike in current indicate full depletion of the device. With a low voltage applied to the output electrode, the electric field is too weak for impact ionization to occur. As bias is increased, the depletion region approaches the n-well
beneath the injection point and electrons are injected into the depletion region where they drift toward the positively biased output electrode without experiencing impact ionization. As continued bias further increases the electric field, impact ionization begins to occur. Further bias causes a sudden breakdown at the collector. This is indicated by a marked jump in the output current at around 45 V for the device shown in figure 5.6a. Figure 5.6b shows the gain versus voltage curve for the same device indicated in figure 5.6a.

It should be noted that the floating voltage at the input is not considered a direct function of collector voltage. It is directly related to the current through the depletion region and thus depends on the gain which is a function of collector voltage. Varying the spacing between the input and output wells causes the devices to deplete at slightly different voltages but once breakdown voltages are reached no noticeable effect on the gain or frequency response of the device is seen.

5.6.2 Gain Control

Well designed silicon APDs and earlier SIMs [43],[46] exhibit gain curves that increase more gradually with voltage. This is desirable because the gain is less susceptible to power supply fluctuations and variations in temperature. The reason for the more abrupt breakdown in this SIM can be explained by examining the electric field distribution shown in figure 5.2. Figure 5.2a shows the device geometry while figure 5.2b and figure 5.2c show the electric field extracted from device simulations along indicated cutlines in the horizontal and vertical directions. The plots show that the electric field is high near the output electrode but quickly drops off away from the output. Most of the impact ionization takes place in these high field regions. Such a high field means that even small changes in field magnitude create large changes in multiplication gain [50]. Consequently, small voltage changes on the SIM’s output node lead
to abrupt breakdown in the current versus voltage curves. Future SIM designs are designed in such a manner to have more controllable gains.

Figure 5.6: a) Collector current versus voltage for modeled and fabricated pn junction injection SIMs. The solid black and gray curves represent simulated injection currents of 50 nA and 500 nA respectively. These are plotted along side test results for 50 nA and 500 nA injection which are represented by diamond and triangle plots respectively. The leakage current curve for the fabricated devices is also shown and is represented by the x’s. The fabricated device had a width of 10 μm between the n-wells of the injection and output nodes. b) Gain (M) versus voltage curve for the same modeled and fabricated pn junction injection SIM devices from a).
This involves engineering the geometries in three dimensions so the electric field is uniform and evenly distributed between electrodes. This is accomplished via alterations in geometry and is the subject of the two subsequent chapters.

5.7 Space Charge Factor

It is important to remember that the main advantage of the pn junction SIM over the Schottky contact SIM is its ease and consistency in fabrication. This change in architecture is actually in attempt to resolve several issues that proved problematic in the first generation SIM or judged necessary to implement the second generation SIM. One factor in particular which needed to be addressed was gain saturation created by space charge resistance in first generation devices.

Space charge governs the flow of current through regions of space where an electric field is present. In the case of a semiconductor pn junction the built-in voltage of the semiconductor, in combination with external bias create a space charge region through with current flows. At high currents, the large numbers of carriers present within the region mask the influence of the external field within the region and effectively lower the electric field. This reduction in field due to high current density slows the drift of carriers across the region and reduces any gain produced in multiplication areas. As noted earlier, this field reduction ΔE can be expressed as $\Delta E_m = I d / (2\varepsilon_0\varepsilon_s \nu A)$, where E_m is the maximum value of the electric field in the depletion region, d is the spacing between the electron injection contact and the electron collector, ε_s is the permittivity in silicon, ν the electron drift saturation velocity, and A is the depletion region cross section area [45]. This field reduction can also be expressed as a resistance hence the term space
charge resistance

\[R_{sc} = \frac{d^2}{2\varepsilon \sqrt{\nu A}}. \]

5.8

Reduction of space charge resistance within the design parameters of the SIM is primarily a game of reducing \(d \) and increasing \(A \). The varying distances between input and output nodes were sufficient to provide decent optimization of \(d \), however, the cross sectional area is quite small as evidenced by figure 5.7. Figure 5.8 shows the cross-sectional area of the SIM. Increasing this cross-sectional area in a surface device like the SIM is more difficult that it is in a planar device like an APD. In the latter case, carriers travel through the device in an evenly spread manner. With a planar surface device, injected electrons spread evenly across the wafer surface while maintaining a close proximity to the surface. Thus in the case of the SIM, increasing the cross-sectional area is linear process where the electron collector is lengthened to further spread the electrons across the surface of the SIM.

This is easily accomplished by making the electron collector contact longer and in turn lengthening the injection contact in like manner. This permits the presence of higher currents, via injection or multiplication, within the space charge region of the SIM before experiencing gain saturation or decreased frequency response due to space charge resistance. While fabrication of a Schottky electron injection contact long enough to compliment the increased length of the electron collector would present a challenge of uniformity and yield, the sheet of current flowing between input and output contacts may not be uniform due to preferential silicidation of the Schottky metal into the silicon. Most importantly, a pn junction injection node allows fabrication steps to be consolidated with formation of the collector pn junction. Thus improvements in the doping process that manifest better uniformity and yield improve both contacts.
Figure 5.7: Top view of the first generation SIM. With a 3 x 1.5 µm Schottky contact and a 10 x 10 µm Phosphorous doped well electron collection. The length between the Schottky contact and n+ region is varied between 3 and 9 µm for different device designs on the same substrate.

Figure 5.8: Illustration of the SIM showing the injection pn junction and collector pn junction. The collector pn junction is biased to produce a depletion region and the cross sectional area used to determine space charge resistance is illustrated.
5.8 Conclusion

The frequency response of second generation SIM is not significantly better than the first
generation Schottky contact SIM. Furthermore, the frequency response is limited in both cases
by a time delay required for carriers that enter the depletion region. For the second generation
SIM, the frequency response is limited by the resistive effects caused by shifts in the quasi-Fermi
level while the first generation SIM is limited by resistive effects caused by thermionic emission
over a barrier that changed height with changes in input current. These shifts are due to the
varying current levels through the depletion region and result in a kT/qI resistive limiting factor
in both devices. Considerations on how to overcome or reduce this resistive factor as well s how
to make gain curves more gradual and controllable are considered in subsequent chapters.
6 GAIN SHAPING VIA BURIED OXIDE

6.1 Introduction

A significant difference between the SIM and other impact-ionization based devices is its three terminal design. All three terminals are necessary to facilitate impact ionization gain as described in Chapter 3. However, three terminals immensely complicate the gradient of fields within the SIM and consequently affect the preferred path of carriers.

Two terminal devices such as IMPATT diodes and APDs are built with one terminal on the front of the wafer and the other on the substrate. Placement of these two terminals confines carriers to the bulk of the semiconductor [51], [52]. Ring doping on the semiconductor surface confines high fields and thus carriers away from the edges of the die. Because carriers can be confined in this manner, carriers originate within the bulk, travel through the bulk, and avoid contact with the semiconductor surface. Consequently, surface effects can be neglected in most cases. A three terminal setup utilizing conventional VLSI fabrication requires that two terminals reside on one surface. Thus carriers inevitably interact with the surface.

Surfaces often have a higher concentration of defects and impurities than within the bulk wafer. Semiconductor surfaces behave like bulk semiconductor to the extent that they can be passivated. This involves covalent bonding each surface atom with another atom or molecule such that the electronic properties of the semiconductor are preserved. Fortunately for silicon, silicon dioxide does just that. Other semiconductors are not so fortunate. III-V semiconductor
oxides do not passivate surfaces, but create defects that destroy electrical properties. Since silicon dioxide (SiO₂) can be thermally grown to satisfactorily passivate the silicon surface of the SIM, the principle surface effect is one of electron field confinement.

6.2 Electron Confinement

The surface structure architecture of the SIM causes the majority of impact ionization to occur near the semiconductor surface instead through the bulk of a semiconductor. Unlike an APD, where signal carriers are optically introduced within the bulk of the wafer in the depletion region, signal carriers in the SIM are introduced at the surface via the injection node and travel horizontally to the output electrode. This horizontal current flow creates a challenge that requires thoughtful device design to confine traveling electrons though the highest electric fields within the SIM.

As injected electrons travel between the input electrode and collector, the fields between them cause electrons to travel close to the semiconductor surface. Figure 6.1 shows an ATLAS [Silvaco International, Santa Clara, California] simulation which illustrates the electric field intensity within the device, while figure 6.2 illustrates the carrier path when electrons are injected into the SIM. It is readily noticeable that injected electrons prefer to skim the surface of the device between the oxide/semiconductor interface instead of travel through the bulk of the device. While the high carrier concentration causes some carriers to diffuse vertically away from the surface and into the highest field region of the collector, most of the carriers pass through a lower field and experience little, if any, impact ionization. Thus, much of the input signal passes through the SIM without being amplified.
Figure 6.6.1: Cross section of the ohmic contact SIM with $V_{\text{SIM}}=50\,\text{V}$. Notice that the peak electric field resides at the corner of the N+ doping region roughly a distance D_{well} from the SIM surface.

Figure 6.6.2: Cross section of the ohmic contact SIM with $V_{\text{SIM}}=85\,\text{V}$ and $I_{\text{injection}}=10\,\mu\text{A}$. The current density represents injected electrons moving from right to left close to the surface of the SIM, and hole density primarily generated via impact-ionization being drawn from the left N+ doped well toward the P+ substrate.
This problem of poor gain efficiency can be remedied by a fabrication process that introduces an insulator between the two surface nodes to shape the path of injected electrons. This modification creates a new class of buried oxide devices and is referred to as a buried oxide SIM.

6.3 Impact Ionization Efficiency

Electric field distribution and carrier path through the depletion region determine the impact ionization efficiency of injected electrons. Where impact ionization is defined as follows

\[\eta = \frac{n_{amp}}{n_{in}}. \]

Where \(n_{amp} \) represents number of electrons that undergo impact ionization by passing through the high electric field at the output node and \(n_{in} \) the total number of injected electrons. The applied bias at the output node creates the high electric fields within the SIM. As explained in Chapter 3 this bias creates a vertical field between the output electrode and the substrate and a horizontal field between the injection point and the output. This combination of vertical and horizontal fields creates a maximum electric field point located at the corner of the output pn junction as illustrated in figure 6.1. Analyzing the carrier path and location of the maximum electric field, it becomes apparent that the majority of the injected carriers do not pass through the optimal multiplication region. Therefore only a small number of electrons are significantly multiplied. In the case of low impact ionization efficiency, only a fraction of the total net injected signal experiences high multiplication gain while the larger portion experiences little or no gain. This causes an increased excess noise factor compared to a signal that is being uniformly amplified [53], [41]. The electric field profiles shown in figures 6.1 and 6.2 were taken from simulation
with no leakage current. The absence of appreciable leakage current tends to increase the magnitude of these fields. However, recently fabricated buried oxide SIMs typically have leakage currents in the range of 200 pA to 1 nA. Thus the fields while not as strong still operate in the same manner as shown in the figures.

To illustrate effects of low impact ionization efficiency on the gain versus voltage relationship, consider Equation 3.11

\[
M_n = \frac{J_n(L)}{J_n(0)} = \frac{1}{\exp\left[-\int_0^L \{\alpha(x) - \beta(x)\} dx\right] - \exp\left[-\int_0^L \{\alpha(x') - \beta(x')\} dx'\right]} \quad 6.2
\]

which can be rewritten as

\[
1/M_n = \exp\left(-\int_0^L \{\alpha(x) - \beta(x)\} dx\right) - \int_0^L \beta \exp\left(-\int_x^L \{\alpha(x) - \beta(x)\} dx'\right) dx \quad \quad 6.3
\]

where \(\alpha\) and \(\beta\) are the electron and hole ionization coefficients. When all injected electrons contribute to the multiplication gain \((M_n)\) then the output current, \(I_{out}\), is defined as

\[
I_{out} = I_{in} M_n \quad 6.4
\]

where \(M_n\) represents the average gain experienced by all electrons where \(I_{in}\) is the input current. In the case where a fraction of the injected electrons experience multiplication by entering the high field region

\[
I_{out} = I_{in} \eta M_n + I_{in} (1 - \eta) \quad 6.5
\]

Since \(\alpha\) and \(\beta\) are dependant upon the magnitude of the electric field in which the carriers are found by

\[
\alpha = a_1 \exp\left(-\frac{a_2}{E(x)}\right) \quad 6.6
\]
and

$$\beta = b_1 \exp\left(- \frac{b_2}{E(x)}\right).$$ \hspace{1cm} \text{6.7}$$

Here, a_1, a_2 and b_1, b_2 are constants which depend upon the range of the electric field’s magnitude [54].

Using Equations 6.3 - 6.7, relative gains for 100% efficiency and 1% efficiency are plotted in figure 6.3 and show the importance of high impact ionization efficiency. Observe that dM/dV, the rate of change of the gain with respect to voltage, varies with efficiency. For the 1% efficiency case, this rate is much larger for a given voltage. Lower dM/dV is generally preferable because it gives greater flexibility to addressing factors that cause the gain to drift such as power supply voltage fluctuations and gain shifting due to temperature fluctuation. However, in the case of Geiger mode impact ionization devices a large dM/dV is preferred because it increases the probability of a photon successfully initiating an ionization event. It also improves quenching time by reducing the voltage reduction necessary to terminate the ionization event [55]. For a SPAD this large dM/dV is desired and necessary. However, a large SIM dM/dV means that only a small percentage of the injected electrons contribute to the total device gain while most contribute little or no gain. It is for this reason that poor gain efficiency requires a large dM/dV to achieve appreciable gains.

The fraction of electrons that enter the high multiplication field is based upon the vertical penetration depth of the high field region with respect to the device surface. The only electrons which significantly contribute to gain are those which vertically diffuse away from the surface to a depth where high multiplication fields exist. The vertical distance into the device that the carriers are able to diffuse is governed by
\[
\left. \frac{d\Delta n}{dt} \right|_x = -D_n \frac{d\Delta n}{dx}, \tag{6.8}
\]

where \(\Delta n \) is the change in carrier concentration and \(D_n \) is the diffusion coefficient for the material [56].

Figure 6.6.3: Theoretical gain vs. voltage (M vs. V) plot as produced by equation 6.5 showing how the gain curves rise very abruptly with a low electron injection efficiency. It compares the theoretical cases of 1% efficiency for electron injection into the high field region and 100% efficiency.

Thus the concentration of carriers that diffuse into the bulk is proportional to the concentration gradient at point \(x \) and inversely proportional to the distance [57]. The number of carriers that diffuse into the bulk a distance \(d \) changes dramatically for a constant diffusion time.
Figure 6.6.4: ATLAS simulations showing the gain vs. voltage curves for Dwell=0.5\(\mu\)m, 1.5\(\mu\)m, and 3.0\(\mu\)m. It illustrates how the impact ionization efficiency is dependent upon the depth of the n+ well (Dwell). This is due to the electric field distribution for varied well depths. It becomes apparent that achieving appreciable gains is very difficult in devices with low impact ionization efficiency.

Considering that the electron path through the depletion region is on the order of 10\(\mu\)m and assuming the saturation velocity of electrons to be constant at 1.05x10^7 cm/s, the transit time for electron across this region is roughly 100ps [58]. In such a short time a small number of carriers would diffuse to a depth of 0.5\(\mu\)m into the bulk. Simulations using ATLAS were conducted on figure 6.1 where the depths of the N+ doped wells, D_{well}, varied from 0.5\(\mu\)m, 1.5\(\mu\)m, and 3.0\(\mu\)m. Figure 6.4 contains the results of these simulations showing the current vs. voltage (IV) curve as D_{well} was varied. For D_{well} = 0.5\(\mu\)m, the IV curve shows a more gradual breakdown before complete breakdown is reached. Contrast this to the D_{well} = 3.0\(\mu\)m curve where little breakdown is evident before the spike indicating complete breakdown.
Theoretically, improving impact ionization efficiency could be remedied by shallow well doping on the input and output electrodes. However, this is fairly difficult as high voltages could cause the shallow wells to completely deplete. The answer lies in a buried oxide layer between the wells.

6.4 Benefits of Buried Oxide for Increased Ionization Efficiency

The constraints necessary to improve gain efficiency in the SIM led to the implementation of an oxide layer placed between the wells and buried into the bulk to a depth equal to or greater than the depth of the N+ wells. Figure 6.5 illustrates this structure with applied bias but not injected current and figure 6.6 shows the structure in gain mode with injected current. This oxide layer optimizes ionization efficiency by effectively shaping the path of injected carriers in a way that guides the majority into the maximum field region. Comparing figures 6.1 and 6.5 shows that introduction of the oxide does not affect the electric field. The maximum electric field is at the same point as would be expected regardless of the depth of the oxide d_{ox}. While the carriers still tend to travel along the surface of the silicon and while there is still some diffusion into the bulk of the device, the oxide guides the vast majority of injected carriers into the high field region.

Figure 6.7 illustrates the improvement in gain vs. voltage from data obtained from ATLAS simulations on SIMs with and without the buried oxide layer. The gain behavior between the oxide and no oxide case are significant. More importantly, the amount of voltage required to produce a gain of 10 was roughly 60 V for buried oxide and 93 V for no oxide.
Figure 6.5: Buried oxide SIM showing the total current density for $V_{\text{sim}}=50\text{V}$ and $I_{\text{injection}}=10\mu\text{A}$ where $d_{\text{ox}}=D_{\text{well}}$.

Figure 6.6: Sim cross section showing the total current density at $V_{\text{sim}}=50\text{V}$ and $I_{\text{injection}}=10\mu\text{A}$. It was necessary to decrease V_{sim} from that of the ohmic contact SIM shown in figure 5.2 to obtain current levels comparable to the low impact ionization efficiency configuration of ohmic contact SIM.
Without oxide a small number of carriers must undergo multiplication of 100 to 10,000 so that the ratio between the total current out to the total current in is 10. Without oxide the gain of 10 occurs at fields that produce gains of 1000. Contrast this to the buried oxide device where a gain of 10 occurs at fields that produce gains of perhaps 10.01.

Figure 6.7: Simulation results illustrating the gain vs. voltage for a comparison of the buried oxide SIM with the no oxide SIM. It illustrates how abruptly the gain curves change and demonstrates the benefit of the buried oxide in improving the impact ionization efficiency of the SIM.

The optimal ratio between the oxide depth and well depth is found through simulation. Figure 6.8 shows simulations of \(dM/dV \) at \(M = 50 \) vs. oxide depths \((d_{ox}) \) ranging from 0.0\(\mu \)m to 2.0\(\mu \)m with \(D_{well} = 1\mu \)m. Thus \(dM/dV \), at a realistic gain, exhibits significant dependence on
d_{ox}/D_{well}. Intuitively, the ideal ratio between d_{ox}/D_{well} is 1:1 because the oxide channels electrons in the shortest path to the maximum electric field point. However, figure 6.8 also points out that little efficiency is lost when d_{ox} is somewhat deeper than D_{well}. This is because most carriers take the shortest route to the lowest potential and the few carriers that do diffuse away are fairly minimal and due to the carrier concentration gradient.

Figure 6.8: Results from ATLAS simulations extracting the derivative of gain (M) with respect to voltage (dM/dV) for various oxide depths (d_{ox}). In these simulations $D_{well}=1\mu m$ for the various oxide depths ($d_{ox}=0.0\mu m-2.0\mu m$). Using the output current-voltage curve, a gain (M) vs. voltage curve was produced for each oxide depth. Then selecting a gain of $M=50$ for all oxide depths, the derivative of gain (M) with respect to voltage (dM/dV) was taken.
6.5 Buried Oxide Device Fabrication

Actual buried oxide devices and standard devices were fabricated on silicon and compared with simulation models. Fabrication of these buried oxide devices has evolved over time to produce devices with better yield and higher gains. However, all these evolutions can be lumped into two unique generations of fabrication. Figure 6.9 illustrates the fabrication process for first generation buried oxide devices. These were fabricated on a p-type silicon epitaxial wafer with an EPI layer of approximately 3 Ω-cm resistivity and 10μm thick with a substrate of 0.01 Ω-cm in resistivity. A 200-nm layer of LPCVD silicon nitride is then grown on the bare wafer surface. While sputtered and PECVD silicon nitride do not inhibit oxide growth at high temperatures, LPCVD silicon nitride works quite well during thermal oxidation as an oxide growth mask provided the temperature and duration is not too long. This mask is then patterned by removing portions of the silicon nitride by Reactive Ion Etching (RIE) so that only features of varying widths (30–360μm) and spacing (3–9μm) remain. These features eventually become the N-wells of the buried oxide SIM devices. The wafer is then immersed into a hot KOH solution to etch the necessary pedestals. During the silicon pedestal etch, the silicon nitride acts as a mask during the formation of pedestals 1.5 μm in height. These pedestals create the necessary electron confinement between the injection node and output node that is unique to the buried oxide structure. The next step involves growing a thermal oxide over the wafer. At this time the patterned silicon nitride, which acts as a mask in the pedestal growth, prevents the growth of thermal oxide to the top of the pedestal during the oxidation step. This thermal oxide layer creates the actual oxide between the wells necessary to passivate the silicon surface and confine the electrons. During the oxidation phase, the silicon nitride inhibits oxide growth on the top of the pedestal.
Figure 6.9: Buried Oxide SIM fabrication where a bare silicon EPI wafer is a) coated with LPCVD silicon nitride. b) The silicon nitride is patterned and dry etched to create a pedestal KOH etch mask and then c) KOH etched to create pedestals of desired height. d) With the silicon nitride KOH etch mask doubling as a thermal oxide growth inhibitor a thermal oxide is grown on the bare silicon. e) Following oxidation, the silicon nitride mask is removed with a quick RIE etch. f) A phosphorus doped spin on glass is then applied to the wafer and g) the field oxide acts as a diffusion barrier so that only the pedestals are etched during diffusion. h) Lastly, the spin on glass is removed and metal contacts are made to the doped pedestals.

Following oxidation, the silicon nitride mask is then removed with a light RIE etch to reveal a bare silicon pedestal top ready for doping with the oxide on the sides of the pedestal and surrounding field of the wafer acting as a doping mask. The lightness of this RIE etch is critical. The RIE can significantly damage or over etch the silicon. Any damage that occurs during the RIE etch must be repaired in the subsequent diffusion step. This damage is typically manifest by generation centers which create large amounts of leakage current at high fields within the SIM. Following the etch, the wafer is doped with Honeywell P-8545 phosphorus doped spin on glass.
Following diffusion, the glass is stripped off in buffered HF and front and backsides of the wafer are metalized to create a substrate contact and individual leads to devices. The diffusion depth of the phosphorus which forms the two N wells must be carefully controlled. If the doping reaches below the depth of the pedestal, electrons in transit between the wells are no longer confined by the oxide. This will effectively mitigate all effects of the oxide, so as mentioned previously, it is important that the diffusion depth is less than the 1.5 um pedestal height. The front and back of the wafer are then metalized appropriately.

After fabrication, a first generation buried oxide SIM device was cleaved perpendicular to the N wells revealing the unique cross section of the buried oxide SIM. This cross section was observed using a Scanning Electron Microscope (SEM). A SEM image of the cross section is seen in figure 6.10.

A newer process to creating buried oxide SIMs has been created in a manner that improves device yields and leakage currents. In the previously explained process, LPCVD silicon nitride plays a pivotal role as a KOH etch mask and also as a thermal oxidation growth inhibitor mask. However, LPCVD silicon nitride becomes difficult to remove after oxidation. While it is true that silicon nitride can be wet etched in high temperature phosphoric acid, it can no longer be cleanly removed in this manner after the stresses of high temperature thermal oxidation. In consequence, RIE etching becomes the only option. As mentioned previously, the power and ion bombardment involved in RIE etching is undesirable as it damages silicon and creates high leakage currents. This is manifest in the relatively high leakage currents (300 nA) of the first buried oxide SIMs. Furthermore, LPCVD silicon nitride deposition is an expensive, extra process which would prove advantageous if eliminated.
In efforts to eliminate the LPCVD silicon nitride and ensuing RIE removal etches, newer buried oxide SIMs use chemical mechanical polishing (CMP) to remove the oxide off the top of pedestals. This method eliminates the need for silicon nitride and is a straightforward way to expose the tops of pedestals for doping. Figure 6.11 illustrates the second generation buried oxide SIM fabrication process. These were fabricated on a p-type silicon epitaxial wafer with an EPI layer of approximately 3 Ω-cm resistivity and 10μm thick with a substrate of 0.01 Ω-cm in resistivity. 100 nm of oxide is thermally grown on the wafer. The layer of oxide is patterned
with resist and the field oxide is etched in buffered HF so that features of varying widths (30–360μm) and spacing (3–9μm) remain.

Figure 6.11: Fabrication of the second generation Buried Oxide SIM begins by growing a) thermal oxide to act as a KOH etch mask. b) The thermal oxide is then patterned to form the etch mask and c) KOH etched to form pedestals. d) The etch mask is then removed and e) thermal oxide is grown over the entire wafer. f) SU8 is then placed over the wafer to protect the field oxide during polishing and g) the oxide on the top of the pedestal is removed via Chemical Mechanical Polishing (CMP). After cleaning off the SU8, g) the exposed silicon pedestal tops are then doped with phosphorus spin on glass with the thermal oxide acting as a diffusion barrier. j) Lastly the spin on glass is removed and metal is patterned onto the doped pedestals.
These features mask of the tops of the pedestals as the wafer is etched in hot KOH to form silicon pedestals of roughly 3 μm. After etching a 500 nm thick layer of thermal oxide is grown on the wafer. This passivates the surface, acts as a doping mask, and creates the buried oxide feature between the N wells. SU-8 3005 is then spun on the wafers. The minimum thickness of SU-8 3005 is about 3 μm. This corresponds well to the top surface of the pedestals. The conformal quality of SU-8 provides a flat field area with minimal beading on the tops of the pedestals. Using CMP, the SU-8 beading on the pedestals tops is easily removed along with the oxide layer on the pedestal top. After polishing, the SU-8 is removed and Honeywell P-8545 phosphorus doped spin on glass is applied and diffused into the wafer. Following diffusion, the excess glass is removed in buffered HF and front and back sides of the wafer are metalized. After metallization, wafers were annealed for 30 minutes at 450°C in a forming gas environment. A detailed recipe of the second generation buried oxide SIM is found in Appendix A.

6.6 Gain Measurements

DC measurements which compare the IV curve and dM/dV differences between buried oxide SIMs and planar SIMs were conducted using a silicon photodiode (Perkin Elmer VTP1012) as the current input source into the injection node of the SIM are illustrated in figure 6.12. It was illuminated by an 850 nm Fiberlink XA-1000A-1 laser. All nodes in the measurement process were biased and monitored using an Agilent 4156 Semiconductor Parameter Analyzer.
Figure 6.12: Testing setup used to verify gain differences between Ohmic Contact SIMs and Buried Oxide SIMs.

Figure 6.13 shows measurements for both planar and buried oxide devices and compares them to ATLAS simulations of equivalent devices. The curves illustrate typical performance of planar and buried oxide devices. At lower voltages, the electric fields produced are too small to induce impact ionization. However, at higher applied voltages, current flowing between in nodes triggers impact ionization. In the planar SIM devices, few electrons enter the maximum field region [21]. Consequently, little if any gain is noticeable until high amplification of these few electrons occurs as they pass through the maximum field. This dramatic change in field requires a small change in voltage and results in a sudden jump in current. Conversely, buried oxide SIM devices exhibit a more gradual increase in gain.
Figure 6.13: Current vs. voltage curves showing measured and simulated differences between breakdown voltage and gain. The Measured (No Oxide) data curves and simulation curves and Measured (Oxide) data and simulation curves were made from wafers identical in doping and similar in n-well doping profiles.

Figure 6.13 also shows the measured dark current levels for first and second generation buried oxide SIMs and planar SIMs. Buried oxide devices show better signal to noise ratios and second generation buried oxide SIMs exhibit much lower leakage currents. Most importantly, second generation buried oxide devices exhibit stable currents, stable gain over time and do not manifest any indication of device damage from normal operation.

6.7 A Note on Metallization

During evaporation, Aluminum will experience a eutectic reaction with silicon that is caused by the heat lost during metal condensing on the wafer. While introducing a small
percentage of silicon into the aluminum can help reduce this problem, this is difficult because
during evaporation the vapor pressures of the two materials are so different that the aluminum
tends to evaporate first followed by the silicon [59]. Thus the silicon is often not located in the
film near the wafer interface where it is most needed to prevent eutectic spiking. Even with
silicon present in the aluminum, a small amount of spiking still occurs. Thus aluminum is not a
suitable material for contacting shallow doped wells. For the first buried oxide SIMs, a 100nm
thick nickel barrier metal contacts the doped silicon N wells and is followed by aluminum.
Nickel turns out to be a fairly poor barrier metal for aluminum. Aluminum is reactive enough
with nickel that at evaporation temperatures the aluminum will consume the nickel to form
aluminum rich NiAl3 [60]. If the amount of aluminum is very high, the aluminum consumes the
nickel and then consumes the silicon resulting in a spike through the doped portion of the silicon.
Furthermore, if the N well is very shallow, the nickel barrier metal may spike through the well
while forming a nickel silicide.

An excellent barrier metal option is combination of 5% titanium (Ti) 95% tungsten (W)
or platinum. Because of vapor pressure differences, an alloy of 5% Ti and 95 % W can only be
sputtered, however it is the barrier metal of choice for second generation buried oxide SIMs.
Proper annealing of the TiW alloy provides an excellent ohmic contact to N type silicon [61].
While 100% tungsten may work as an effective barrier, it does not adhere well to silicon dioxide
and thus requires additional lithography steps. Platinum, can be an excellent option. If arsenic is
used as a dopant instead of phosphorus as is the case for many shallow doping situations, then
platinum is probably the best option. During silicidation, platinum actually rejects incorporation
of arsenic dopant atoms. Consequently, the arsenic is pushed deeper into the silicon and piled up
to rest at the metallurgical interface. This “snow plow” effect on arsenic creates a very heavy
doping at the interface which further reduces the contact resistance of the platinum-silicide contact [62].

Proper metallization for a given device structure has been one of the great challenges of this research. Past generation SIMs designs produced low wafer yields with leakage currents typically in the hundreds of nano-amps. Perfecting the metallization process has been a key element in improving yields and reducing leakage currents.

6.8 The Importance of SU-8 in Planarization

The powerful, unique role of SU-8 in the planarization process involved in second generation buried oxide SIMs is explained more fully in this brief section. In essence the SU-8 acts as a sacrificial layer that allows selective removal of the pedestal top oxide while completely preserving the field oxide and oxide of the sides of the pedestals. Without the SU-8 acting as a sacrificial layer, this is not possible.

The SU-8 plays a subtle role in the polishing. CMP is a process whereby wafers are planarized. It is not desirable to planarize the pedestals doing so would cause the pedestals to be rounded instead of flat on the top as they are polished off. SU-8 prevents this from happening. To do this it is important that pedestals are purposely etched to the height near that of the thickness of the SU-8 to be used. The SU-8 planarizes around the pedestals such that only the top of the pedestals are above the planarized SU-8. In this way, the polisher quickly removes the pedestal tops to the thickness of the SU-8 but slowly removes the SU-8 and silicon behind it because the non-planar features have already been removed. It is also important to note that too thick a layer of SU-8 will completely cover the pedestals and result in a very slow pedestal removal process. This is because a chemical mechanical polisher is only effective at planarizing
a wafer. One the wafer is planar, it proves less effective at removing thick layers of planarized substances. Consequently, if several microns separate the pedestals tops from the surface of the SU-8, a long polish process must be endured as the polisher slowly removes the planrized SU-8 down to the pedestal top. In such a scenario, the SU-8 is likely to weaken and break away in chunks causing poor overall results.

The effectiveness of incorporating the SU-8 sacrificial polish layer into the fabrication process can be observed in such cases when the SU-8 fails to properly adhere. In such a case, the SU-8 flakes away and the polisher quickly and completely removes the pedestals.

6.9 Layout Compensation when Considering the KOH Etch

When making buried oxide SIM pedestals via KOH etching, special care needs to be taken in layout so that the final devices are the desired dimensions. Unlike most semiconductors, silicon does not wet etch isotropically. It etches preferentially depending on the crystal plane that is being etched. While this etching ratio varies depending on the etching solution, the ratio between the (100) and (111) plane in a solution of potassium hydroxide (KOH) is roughly 100:1. The slow etch rate of the (111) plane is often attributed its close proximity of silicon atoms. In dry etchers, the (111) plane does not exhibit this resiliency and deep, high form factor features can be made. Silicon wet etching in the end is the preferred method of fabrication because of the low impact that it has on the electrical structure of silicon. Dry etching involves bombardment of large ions at relatively high energies which can damage the lattice of the residual silicon. The extent of this damage relates to the magnitude of RF power used to create the plasma. Wet etching is confined to the silicon surface and relies on the electro-chemical properties of the etchants to do the work. While wet etching silicon introduces more design constraints due to its
peculiar etching nature, the amount of damage done to the silicon lattice during dry etching, makes wet etching a more advantageous route. These design constraints are discussed below.

With previous SIM devices the parameters that defined the electron channel length between wells and the well width were defined roughly by the lithographic photomask dimensions. While oxide etching and masking resist introduce some aberrations into these dimensions, they are for the most part of negligible importance in SIM fabrication. With the buried oxide design, much of the overall design is governed by the anisotropic silicon wet etch. Because of the disparity between the (100) and (111) plane etch rates, significant etching in the <111> direction is only noticeable in long etches. Since pedestal etches used to fabricate the buried oxide SIM are relatively short any significant etching occurs in the on the (100) plane in the <100> direction. This causes the (111) plane to form a beveled, unetched edge at a 54.75° angle to the (100) plane. Figure 6.14 illustrates how this effect reduces the electron channel length (L). Notice as shown in Figure 6.14 a) that if

$$L \leq \frac{d'2'}{\tan(54.75°)}, \tag{6.9}$$

the new channel length formed by etching of the buried oxide SIM, L', will effectively shrink to the point of a blind cavity. This becomes a problem when the height of the doping depth within the pedestals is equal to the pedestal height d'. In this case, the channel is completely destroyed and doping within the pedestal effectively diffuses together. However, if the doping depth within the pedestal is at a level d then the electron channel consists of the path around the blind cavity point between the wells. Allowing creation of a flat channel between the pedestals provides the desired electron confinement.
Figure 6.14: a) If the initial spacing between pedestals (L) is too small the etching will form a blind cavity of depth (d') and no channel will exist between pedestals. b) The effective channel length (L') of the etch changes from the initial distance (L) due to the anisotropy of the etch.

Solving the actual channel length L' that is formed after etching the pedestals for the buried oxide SIM is shown in figure 6.14 b). Notice in this case that the mask that protects the
silicon against wet etching must be spaced a distance L apart. A simple formula can be used to calculate this and is seen below

$$L' = L - \frac{2d}{\tan 54.75^\circ}.$$ \[6.10\]

Due to the nature of silicon KOH etching, the actual width of the pedestals is also reduced by the etching. This can also be taken into consideration using the above equations. Silicon KOH etching also constrains the structure of devices which can be built using this method. A basic rule of thumb for silicon KOH etching is this, *no matter the design of the original etch mask, if etched long enough all silicon features will eventually look like four-sided pyramids with a rectangular footprint.* Consequently, rectangular pedestals are quite permissible and work fairly well. While silicon KOH etching has many advantages over other forms of etching, silicon’s anisotropic wet etching nature requires further layout considerations and limits device geometries.

6.10 Conclusion

Easily maintained and controllable gain curves are desirable attributes in the SIM. Buried oxide SIMs possess these attributes. Controllable gains in previous ohmic contact SIM devices were unobtainable due to primary amplification occurring along the surface as opposed to traditional impact ionization based devices that amplify vertically through the bulk of a semiconductor. Amplification on the surface makes it difficult to achieve high impact ionization efficiencies because of the path carrier take through the depletion region. Previously, most of the injected current missed the highest multiplication gain region and passed through the SIM without any amplification at all. Introduction on an oxide layer between injection and output nodes shapes the path of injected electrons into the high multiplication field region of the SIM.
The ratio of oxide thickness to well depth (d_{ox} to D_{well}) is an important consideration to allow for maximum ionization efficiencies. Buried oxide devices show a significant improvement in dM/dV when compared to the planar SIM design. At a DC gain of 18 the buried oxide SIM was measured to have a dM/dV of 1.4 while the planar SIM had a measured dM/dV of 416. Thus shaping the path of the electrons allows shaping of the voltage vs. gain profile of the SIM.
7 KEY ELEMENTS CRITICAL TO HIGH GAIN

7.1 Introduction

The development of larger well dimensions in the SIM was necessary to prevent significant space charge resistance and gain saturation caused by higher injection currents and multiplication gain. This increase in device geometry also saw the implementation of the pn junction injection node instead of the Schottky injection node. These new devices also exhibited gain which was quite poor and adoption of a buried oxide structure was necessary to improve gains. However, this transition brought with it several phenomena between first generation planar devices and buried oxide devices that were never explained but consistently evident. These were the difference in breakdown voltage between second generation planar SIMs and buried oxide SIMs and the sudden drop in gain between first generation SIMs and second generation planar SIMs. Even more interesting, was the difference in junction breakdown between rectangular devices and their circular counterparts. Just as rectangular buried oxide devices broke down at higher voltages than planar diffused junction devices, circular pedestal devices broke down at higher voltage then their rectangular buried oxide counterparts. Investigation into breakdown voltage differences has led to the discovery of geometrical factors which improve the breakdown voltage of the SIM and make fields more uniform to improve gain efficiency.
7.2 Breakdown Voltage and Edge Effects

It is important to notice in figure 6.13, that planar SIMs experience break down at lower voltages than buried oxide SIMs. This change in breakdown voltage is primarily due to the change in geometries that are incorporated into the buried oxide structure. Planar diffused or implanted junctions manifest a sharp curve at the edge of the well as the edge of the junction reaches the oxide surface (Figure 7.1). The radius of curvature, \(r_j \), of this curve determines the nature of the junction breakdown voltage. Devices with smaller radii of curvature produce junctions which require a lower the bias voltage to achieve breakdown [7]. This curve profile dependence is especially manifest in one-sided, abrupt junctions. Consequently the planar doping profile of the SIM, which incorporates heavy phosphorus, n-type well diffused into the lightly doped, p- epitaxial layer, creates a junction which breaks down prematurely.

![Figure 7.1: Cross sectional planar diffusion or implantation side profile junction. A junction curvature \(r_j \) is formed at the edges of the doped regions.](image)
Two areas of interest which breakdown before the planar or flat portion of the junction are regions of the junction which are spherical and cylindrical in nature. Those regions are illustrated clearly in figure 7.2. These regions most likely get their name due to the type of coordinate system which is necessary to solve for the fields in that region. Solving for the field in these regions requires the use of Poisson’s equation which states

$$\nabla^2 V(r) = -\rho(r)\varepsilon_s,$$ \hspace{1cm} 7.1

where the gradient of the voltage $V(r)$ is equal to the electron charge density, $\rho(r)$, times the permittivity of silicon ε_s. For cylindrical and spherical junctions, equation 7.1 becomes

$$\frac{1}{r^n} \frac{d}{dr} \left[r^n E(r) \right] = \frac{\rho(r)}{\varepsilon_s},$$ \hspace{1cm} 7.2

where $n = 1$ for a cylindrical junction and $n = 2$ for a spherical junction and $\rho(r)$ for an abrupt junction is $-qN_B$ for $r_j \leq r \leq r_d$. Solving for $E(r)$ yields the following equation

$$E(r) = \frac{1}{\varepsilon_s r^n} \int_{r_j}^{r} r^n \rho(r) dr + \frac{C_1}{r^n}. $$ \hspace{1cm} 7.3

Here, C_1 is a constant of integration which must be set equal to Ψ_{bi}, the built-in potential of the junction. Since breakdown voltage is of interest, the ionization equations are once again needed. Multiplication of electrons as described in equation 3.13 is written as

$$M_n = \frac{1}{1 - \int_{r_j}^{r} \alpha(x) \exp \left[-\int_{r_j}^{r} (\alpha(x') - \beta(x')) dx' \right] dr}. $$ \hspace{1cm} 7.4
Figure 7.2: Illustration of an N-Well planar diffusion profile where the darkened area shows a) spherical regions and b) cylindrical regions.
Avalanche breakdown occurs at the voltage where the multiplication factor becomes infinite. Rearranging the equation 7.4 the condition readily appears as

\[
1 = \int_{n_i}^{r_n} \alpha(x) \exp \left[- \int_{n_i}^{r} (\alpha(x') - \beta(x')) dr' \right] dr = 1 - \frac{1}{M_n}. \tag{7.5}
\]

The equation for holes can be solved in a similar fashion. Using Chynoweth’s equation for ionization coefficients, the electric field dependency of avalanche breakdown becomes noticeable

\[
\alpha, \beta = a \exp(-b/E(r)), \tag{7.6}
\]

where proper selection of \(a\) and \(b\) provide accurate ionization values for electrons and holes.

Using equation 7.5 has a definition of device breakdown and equation 7.3 to compute the fields, relation between junction curvature and breakdown voltage can be obtained. Such a relationship is illustrated in figure 7.3. Examination of figure 7.3 shows a dependence in breakdown voltage depending on junction geometry.

7.3 Breakdown Voltages in the SIM and Their Effect on Gain

This correlation between device geometry and device breakdown is of significant importance in SIM design so that fields are engineered in a manner to provide optimal gain. The SIM is not the first impact-ionization based device to suffer from field effects leading to undesirable breakdown. Many APDs employ high field multiplication regions near the surface of the wafer and use a combination of doping and guard rings to avoid premature breakdown. In fact, many insights in possible SIM design improvement have been gained by examining APD cross section structures similar to the cross section shown in figure 7.4.
Figure 7.3: Breakdown voltage V_b vs substrate impurity concentration, N_b, for plane, cylindrical, and spherical junctions for different radii of curvature [7].

Figure 7.4: 3D cross-section of an avalanche photodiode (APD). Electron hole pair generation occurs in the absorption region after which a current undergoes impact-ionization in the multiplication region and collected. Notice contoured doping of the collection well and floating guard ring to confine carrier to the high field region and prevent breakdown.
After examination of this cross-section it becomes evident that premature device breakdown is not unique to the SIM. Rather premature breakdown is a factor that must be reckoned with in high field devices. Some steps to reduce premature device breakdown happened inadvertently in the buried oxide structure in effort to improve gain efficiency. However, gain efficiency and device breakdown are linked such that improvement of one naturally implies improvement of the other. How this actually happens is best illustrated by figure 7.5. Figure 7.5a illustrates a typical planar diffused junction that is common to all SIM devices before the buried oxide SIM. This device exhibits premature breakdown because of the small radius of curvature, r_j, at the edges of the junction. This junction also exhibits poor gain efficiency as mentioned in the previous chapter because the highest electric field is at the corner near the bottom of the junction and injected electrons skim across the surface missing the highest field multiplication region. Improving the gain efficiency as seen from a cross-sectional view is accomplished by introduction of a pedestal. Figure 7.5b illustrates how this confines surface injected electrons into the high field multiplication regions as explained in Chapter 5. Device breakdown is improved because a KOH pedestal increases the radius of curvature, r_j. Using an anisotropic dry etch provides pedestals with vertical side walls as shown in figure 7.5c. This makes the diode completely planar in nature, because the cylindrical and spherical regions of the diode are completely removed. Thus the device has the highest breakdown voltage. While fringe fields still in reality exist, they remain confined to the oxide and air that surround the pedestal.

Figure 7.5 illustrates an excellent method to improve fields to reduce premature breakdown and improve gain efficiency. However, a strictly cross-sectional view of the SIM will produce a satisfactory solution provided the SIM be of infinite length.
Figure 7.5: Illustrating different junction geometries to improve cross-sectional gain efficiency and reduce fields which create premature device breakdown.
Otherwise the corners of the rectangular well create problems of their own. This is easily observed by examining the fields from above. The cross-sectional illustrations in figure 7.5 show that a pedestal device exhibits superior gain efficiency and device breakdown voltage, but neglects such effects in a three dimensional device. Figure 7.6 illustrates the electric field magnitudes looking down on the devices as calculated in a simulation using SILVACO. Notice that the field is still highest on the corners of the collector. This high field region does not only show the region which will cause premature device breakdown, but also shows the region of highest multiplication gain. Thus while the rectangular pedestal buried oxide exhibits excellent cross-sectional gain efficiency, the lateral gain efficiency as seen from above is quite poor. Injected electrons from the input drift toward the collector to find the highest multiplication region accessible to a small number of carriers.

Examining the fields from a cross-sectional and lateral viewpoint sheds light why multiplication gains suffered significantly with the first pn junction electron injection device. The collectors on first generation devices had a maximum length of roughly 10 microns. While first generation collectors where square and had corners, their relatively short length of roughly 10 um meant that the corners comprised a substantially larger part of the junction than longer, second generation, pn junction injecting devices. This also explains why shorter second generation, pn junction injection devices often exhibited better gains than longer counterparts.

Elimination of sharp corners is most easily accomplished by creating a completely circular, pedestal device. The pedestal confines cross-sectional fields and improves cross-sectional gain efficiency while the circle addresses these same needs from a lateral viewpoint.
Figure 7.6: Electric field magnitude looking down at the SIM. The highest field is at the corners of the collector causing most carriers moving from the input to the collector to miss the highest field region.

The type of device necessary is illustrated in figure 7.7. In this way the fields extend radially outward in a uniform fashion toward the concentric ring shaped electron injection node creating the necessary lateral confinement of electrons and fields. The addition of the raised pedestal region in like fashion ensures cross-sectional confinement. The electric field intensity of a circular pedestal SIM has the same cross-sectional field profile as a rectangular pedestal SIM. The lateral fields are of significant interest and are shown in figure 7.8.
Figure 7.7: A circular geometry is necessary to confine electrons and fields in such a way to enhance gain efficiency and prevent premature device breakdown in the lateral plane. The pedestal in turn confines electrons and fields to provide the same benefits in the cross-sectional plane.

Figure 7.8: Top view of a circular pedestal fields. Notice the uniformity of the maximum fields between the collector (outside ring) and input (inside ring).
7.4 Fabrication

Figure 7.9 illustrates the circular pedestal SIM fabrication process. These are fabricated on a p-type silicon epitaxial wafer with an EPI layer of approximately $3 \ \Omega\cdot\text{cm}$ resistivity and 10μm thick with a substrate of $0.01 \ \Omega\cdot\text{cm}$ in resistivity. SU-8 2002 is used as a photoresist to mask the pedestal regions of the SIM during an anisotropic etch of the silicon wafer to form 2μm high pedestals of varying collector circumference (30–360μm) and spacing between collector and surrounding input ring (3–9μm). The resist is then removed and a 500 nm thick layer of thermal oxide is grown on the wafer. This passivates the surface, acts as a doping mask, and creates the buried oxide feature between the collector and input. SU-8 2002 is then spun on the wafers. The minimum thickness of SU-8 2002 is about 2μm. This corresponds well to the top surface of the pedestals. The conformal quality of SU-8 provides a flat field area with minimal beading on the tops of the pedestals. Using CMP, the SU-8 beading on the pedestals tops is easily removed along with the oxide layer and some of the silicon on the pedestal top. After polishing, the SU-8 is removed and Honeywell P-8545 phosphorus doped spin on glass is applied and diffused into the wafer. Following diffusion, the excess glass is removed in buffered HF and front and back sides of the wafer are metalized with a TiW barrier metal over the active regions of the pedestal and followed with aluminum on front and back sides of the wafer. A detailed recipe of the second generation buried oxide SIM is found in Appendix A. These recipes are fairly exact and precise to obtain the desired pedestal heights and doping profiles. However, minor modifications to these recipes should still produce SIMs which are fully functional and exhibit gain.
Figure 7.9: Fabrication of the circular pedestal SIM begins by spinning a) SU-8 2002 on the wafer and b) patterning the active regions of the SIM. The resist allows for the formation of the pedestal by protecting the active region during the c) anisotropic etch to create the circular collector pedestal and ring input. d) The SU-8 is then removed and e) thermal oxide is grown over the entire wafer. f) SU8 is then placed over the wafer to protect the field oxide during polishing and g) the oxide on the top of the pedestal is removed via Chemical Mechanical Polishing (CMP). After cleaning off the SU8, g) the exposed silicon pedestal tops are then doped with phosphorus spin on glass with the thermal oxide acting as a diffusion barrier. j) Lastly the spin on glass is removed and metal is patterned onto the doped pedestals.

7.5 I-V Characteristics and Gain

Understanding the progression toward maximum gain before device breakdown is best visualized with a plot of current vs. voltage of a reverse-biased diode before breakdown (figure
7.10). Initially, the increasing bias on the junction only produces leakage current through the diode. As the bias increases, several factors can come into play which can cause premature breakdown. In this case, geometry is the dominant factor which causes device breakdown. Sharp corners in the geometry of the diode, which can be approximated to be spherical in nature, will be first to cause premature breakdown. If geometries mitigate premature breakdown from spherical regions in the diode, higher biases on the diode will reveal the presence of cylindrical regions when the diode once again prematurely breaks down.

Figure 7.10: Current vs. voltage curve illustrating breakdown for different regions of a planar diode.

It should be noted that planar diffused diodes which are circular in nature and large in diameter can effectively eliminate spherical regions of the diode, but the penetration of the dopant into the silicon naturally causes cylindrical regions at the edge of the junction. Thus premature breakdown still occurs. Vertical structure APDs (as seen in figure 7.4) seek to stave off this premature breakdown by creating doped collection wells in several steps and by creating floating
guard rings by surrounding the well at the surface with a concentric region doped like the well which is electrically isolated from any contacts. These rings and multiple step formation of the collection well seek to confine fringe fields created by the cylindrical nature of the edge on the junction so that the diode breaks down uniformly. Implementation of a pedestal in the SIM eliminates premature breakdown due to the cylindrical region of the SIM, because the pedestal inhibits formation of any curved region. The diode is in essence planar and applied bias to the junction cause uniform strength of the field and uniform breakdown of the planar portion of the diode (figure 7.5c). The abrupt termination of the doping at the vertical oxide interface of the pedestal does cause fringe fields, but these fields are optimally confined to the oxide and air surrounding the silicon and not the silicon itself.

Gain vs. applied collector voltage for rectangular buried oxide pedestal and circular buried oxide pedestal SIM devices are shown in figure 7.11. Note the significant improvement in gain and increased breakdown voltage for the circular device. While improvements in gain between planar diffused junctions and rectangular pedestal junctions have been shown in the previous chapter, these devices failed to address field effects in the lateral plane.

While DC gain measurements are indicative of AC gain, the correlation is only for the first slowly, monotonically increasing section of the gain. Thus the AC gain and DC gain track one another until the DC gain manifests an abrupt increase which can be seen in the rectangular pedestal gain in figure 7.11. At this point the fields at the edges of the device begin to breakdown and the AC gain saturates. The extra current collected in the SIM comprises increased leakage current and breakdown noise.
Properly made Circular Pedestal SIMs exhibit an AC gain of 10 to 12. This is a significant improvement from the maximum AC gain of 5 their rectangular counterparts. After this gain is reached, the extra current manifest at the collector is predominately due to leakage currents from device breakdown. This may be due to several factors but may have the most to do with the problems encountered from surface or near surface impact ionization.

7.6 Conclusion

The implementation of a circular pedestal is a significant step in the process to perfect the multiplication process in the SIM. Maximizing the multiplication factor requires high gain
efficiency through even field distribution and confinement of any fringe fields that would cause premature device breakdown.

Semiconductor device design is of critical importance at high fields. In the case of the SIM the desired outcome is the maximum amount of AC gain before device breakdown. Since breakdown occurs when fields reach certain strength, reaching a maximum breakdown scenario requires a uniform field potential throughout the device. This ensures that the device breaks down together. Creating such fields requires careful design of the doping profile in the high field regions. Such designs allow for maximum gain with maximum breakdown voltage by providing a spatially uniform field for carrier ionization.
8 SIM FREQUENCY RESPONSE AND BARRIER LOWERING IMPLICATIONS

8.1 Introduction

Chapter 4 addressed the physical limitation in frequency response for a SIM with a pn junction input. This limitation is the large input resistance seen by electrons as they are injected into the SIM. Like pn junctions in general, the cause for this large resistance is due to the electron barrier that separates the input region from the high field multiplication region of the reverse biased collector. This large input resistance can be reduced, but requires that the SIM operate in a mode where an injected DC current is a substantial part of the overall injected current. In this way the junction input resistance can be reduced.

However, another hurdle stands in the way of the SIM and is caused by the collector lowering the potential at the pn junction that forms the input. Originally this was thought to be of negligible importance as it was thought to at best decrease the input resistance. However this Collector Induced Barrier Lowering (CIBL) actually can do the opposite, but can be controlled with a slight device modification. This is discussed further in the chapter.

This chapter explores the improvement in SIM frequency response when a mixed current flows into the SIM in conjunction with barrier lowering at the input caused by collector bias. Using the equations derived previously, this mixing of AC and DC current reduces input resistance and increase the overall frequency response, but fails to reach full potential due to collector induced barrier lowering at the input.
8.2 Floating Node Voltage Revisited

There are several ways of examining SIM input resistance. Each after examination typically points to the floating voltage at the input node. The voltage at the input node floats because it is isolated from any external bias by the photodiode. This photodiode, when reverse-biased, acts as an ideal current source. A wide range of bias voltages can be applied to the photodiode without affecting the current input into the SIM. The only way to change the current input is by manipulating the intensity of light incident on the photodiode. As current from the photodiode enters the SIM, the potential at the pn junction input changes to assume the voltage required to pass current from the photodiode into the SIM. This change in voltage with respect to input current is by no means linear as shown in figure 8.1. Consequently the resistance suddenly decreases with the passage of current. Once the current pulse has passes the voltage once again resumes its previous low input current state. Thus in reality, applying an external lock to the input voltage would cause the input resistance to become infinite. No change of voltage at the node would impede change in current. What would be advantageous is the placement of the node voltage in an operating region where changes in signal current experience less resistance. However this increase in voltage can only be maintained at the pn junction input with the constant addition of current.

As this current is further increased, the input resistance, the inverse slope of the curve in figure 8.1, further decreases. Thus while the voltage is never completely locked, it does change less with additional signal current. The extent to which the input resistance at the SIM input can be reduced and held constant with a mixed current of DC bias and AC signal is determined in subsequent sections.
Figure 8.1: IV curve for the forward biased input node on the SIM. As input current, I_{in}, changes the voltage at the input V_{input} must also change. Since the inverse of the slope represents resistance, the resistance at low input currents is quite large.

8.3 Mixed Current Injection in an Ideal Diode

A mixed current scenario is often implemented in a diodes and Bipolar Junction Transistors (BJTs) where a large DC or quiescent current reduces the resistance seen by the smaller AC signal. The rationale is explained below and in Richard Jaeger’s text [63]. While it is an over-simplification to view the pn junction input of the SIM as a diode, the exercise provides a good foundation to more fully understand the effects of operating the SIM in a mixed current mode where the DC current is much larger than the signal current.

Consider a current I flowing through a diode where I has two parts and is defined as

$$I = I_{DC} + I_{ac}.$$

8.1
In this case we assume that $I_{DC} >> I_{ac}$. As current passes through the junction, the junction voltage changes as well where

$$V = V_{DC} + V_{ac}.$$ \hspace{1cm} 8.2

The conductance through the junction is simply

$$g = \frac{I}{V}.$$ \hspace{1cm} 8.3

As the large DC current moves the diode into a region of lesser input resistance and effectively locks the voltage at V_{DC}, the addition of a small AC current to the DC current causes the resistance to change depending on the relation between I_{ac} and V_{ac}. If I_{ac} is sufficiently small, the relation between I_{ac} and V_{ac} is linear, thus

$$r = \frac{V_{ac}}{I_{ac}}.$$ \hspace{1cm} 8.4

Figure 8.2 illustrates this scenario. Of most notable significance is the realization that the amount of DC current passing through the diode effectively determines the small signal resistance.

Since the DC current determines the resistance, a formula for resistance can be derived using the ideal diode equation.

$$I = I_s \left[\exp \left(\frac{qV}{kT} \right) - 1 \right]$$ \hspace{1cm} 8.5

where kT is the thermal voltage of the junction assumed to be .0259 eV at room temperature.

Solving for conductance, g

$$g = \frac{\partial I}{\partial V}_{\text{DC-Setpoint}} = \frac{\partial}{\partial V} \left[I_s \left(\frac{qV}{kT} \right) \right]_{\text{DC-Setpoint}}$$ \hspace{1cm} 8.6

and
Provided that the diode current at the DC set point is much larger than \(I_s \), equation 8.7 simplifies to

\[
g \approx \frac{qI_{DC}}{kT}.
\]

The small signal resistance through the diode is then

\[
r = \frac{1}{g} = \frac{kT}{qI_{DC}}.
\]

Equation 8.9 shows that which was already illustrated in figure 8.2, namely, that the resistance seen by AC currents, provided they are sufficiently small, is set by larger DC currents.

Figure 8.2: The IV curve of a diode biased with a large DC current to a setpoint. At that setpoint a small change in current causes a linear change in voltage such that the resistance seen by the small signal is constant and determined by the large DC current.
The question now becomes, how small does the AC signal need to be for this relation to be accurate? The extent to which this small signal resistance is valid and operates in a linear regime can be determined by substituting equations 8.1 and 8.2 into equation 8.5

\[I_{DC} + I_{ac} = I_s \left[\exp\left(\frac{qV_{DC}}{kT}\right) \exp\left(\frac{qV_{ac}}{kT}\right) - 1 \right]. \]

8.10

Expansion of the exponential function which contains \(V_{ac} \) is done using a Maclaurin series such that

\[I_{DC} + I_{ac} = I_s \left[\exp\left(\frac{qV_{DC}}{kT}\right) \left[1 + \frac{qV_{ac}}{kT} + \frac{1}{2} \left(\frac{qV_{ac}}{kT}\right)^2 + \frac{1}{6} \left(\frac{qV_{ac}}{kT}\right)^3 + \ldots \right] - 1 \right]. \]

8.11

Multiplying through equation 8.11 yields

\[I_{DC} + I_{ac} = I_s \left[\exp\left(\frac{qV_{DC}}{kT}\right) - 1 \right] + I_s \exp\left(\frac{qV_{DC}}{kT}\right) \left[\frac{qV_{ac}}{kT} + \frac{1}{2} \left(\frac{qV_{ac}}{kT}\right)^2 + \frac{1}{6} \left(\frac{qV_{ac}}{kT}\right)^3 + \ldots \right]. \]

8.12

Substituting equation 8.4 back into equation 8.12 and recalling that

\[I + I_s = I_s \exp\left(\frac{qV}{kT}\right), \]

8.13

equation 8.12 becomes

\[I_{ac} = (I_{DC} + I_s) \left[\frac{qV_{ac}}{kT} + \frac{1}{2} \left(\frac{qV_{ac}}{kT}\right)^2 + \frac{1}{6} \left(\frac{qV_{ac}}{kT}\right)^3 + \ldots \right]. \]

8.14

The small signal resistance shown in equation 8.9 is only valid to the extent that small signal current through the junction is a linear function with small signal voltage. The first term of the series in equation 8.14 is the only linear term. Thus the linear term must be much smaller than the non-linear terms such that
\[
\frac{qV_{ac}}{kT} \gg \frac{1}{2} \left(\frac{qV_{ac}}{kT} \right)^2
\]

or

\[
V_{ac} \ll 2 \frac{kT}{q}.
\]

Plugging this back into equation 8.14 gives a relation in current

\[
I_{ac} = \frac{qV_{ac}I_{DC}}{kT} \approx \frac{I_{DC}}{10}.
\]

Thus the AC current needs to be roughly ten times smaller than the DC current to assume a constant resistance can be set by the DC current. While this solution is enlightening, it is limited in many respects. It assumes the signal current to be much smaller than the DC, locking current. Thus it fails to determine resistance in cases where the signal and locking current are near a unity ratio or where the locking current is significantly smaller than the signal current.

8.4 Mixed Current Injection in the SIM

Deriving a less constrained system response time for the SIM requires a relation which provides an accurate input resistance for any combination of signal and DC currents. This is most easily accomplished by examining the pn junction at the SIM input and determining the effect that input current has on the quasi-Fermi level.

Figure 5.3b is illustrated below as figure 8.3 to provide a visual description of the conduction band structure of the SIM and aid in the analysis. Notice that electrons must traverse a barrier at the input to enter the high field, multiplication region. The quasi-Fermi level at the SIM is given by
\[E_{FN} = E_i + kT \ln \left(\frac{n}{n_i} \right), \] \hspace{1cm} 8.18

where \(E_i \) is the center of the bandgap, \(kT \) the thermal voltage, \(n_i \) the intrinsic carrier concentration and \(n \) a charge density. Realizing \(E_{FN} \) to be a potential, it can be written as

\[V_{FN} = E_{FN} = E_i + kT \ln \left(\frac{n}{n_i} \right). \] \hspace{1cm} 8.19

Figure 8.3: Conduction band diagram of the SIM under bias with injected electrons changing the high field region and thus altering the quasi-Fermi level at the input.
Thus the change in voltage at the input is a function of the quasi-Fermi level. Electrons that are injected into the SIM constitute a charge density such that a substitution for current can be made

$$n = \frac{I}{Aq\nu}.$$ \hspace{1cm} 8.20

A is the cross-sectional area of the diode, q the electron charge, and ν the electron velocity. Such a substitution is valid because the subject of interest is the change in voltage with respect to the change in current, so the fixed charge within the region is neglected. Therefore equation 8.19 is then written as

$$V_{FN} = E_{FN} = E_i + kT \ln \left(\frac{I}{Aq\nu n_i} \right).$$ \hspace{1cm} 8.21

Resistance at the input is found by differentiating equation 8.21 with respect to I such that

$$R = \frac{dV_{FN}}{dI} = \frac{kT}{I}.$$ \hspace{1cm} 8.22

In this case it is difficult to determine what I is as it is vaguely defined. It could imply an average, or steady state current, but certainly gives no insight to the SIM input resistance for any mixture of AC and DC current injection.

To fully characterize the input resistance, we look at the junction with a steady state current flowing through it. The current flowing then abruptly changes by an arbitrary amount, and the resistance is determined. Thus the voltage at the input is a function of the quasi-Fermi level and given as

$$V = E_{FN} = E_i + kT \ln \left(\frac{I}{Aq\nu} \right).$$ \hspace{1cm} 8.23
I_t is the total current flowing through the junction and consists of a purely steady state current of arbitrary magnitude. If suddenly the current, I_1, flowing through the junction changes to current I_2 where $I_1=I_2+\varepsilon$ and ε is of any magnitude, the change in voltage at the node can be written as

$$\Delta V = E_{FN1} - E_{FN2} = kT \ln \left(\frac{I_1}{I_2} \right).$$ \hspace{1cm} 8.24

Resistance is then found by dividing equation 8.24 by ΔI

$$R = \frac{\Delta V}{\Delta I} = -\frac{kT}{I_1 - I_2} \ln \left(\frac{I_1}{I_2} \right) = -\frac{kT}{I_2 + \varepsilon - I_2} \ln \left(\frac{I_2 + \varepsilon}{I_2} \right) = \frac{kT}{\varepsilon} \ln \left(1 + \frac{\varepsilon}{I_2} \right).$$ \hspace{1cm} 8.25

Since the input resistance is by far the largest resistive factor in the SIM the response time τ is shown to be

$$\tau = RC = \frac{CkT}{\varepsilon} \ln \left(1 + \frac{\varepsilon}{I_2} \right),$$ \hspace{1cm} 8.26

where ε is the change in current and C the capacitance of the system. Figure 8.4 illustrates how response time changes with respect to ε for levels of I_2 which are of interest in the SIM. Lest using the quasi-Fermi conduction band to solve for input resistance is a disturbing method for calculating resistance, the same conclusion can be reached with by first isolating V in the ideal diode equation (equation 8.5) and assuming the reverse saturation current, I_s, to be much smaller than either the change in current ε or the DC current I_2.

Equation 8.26 is informative when ε is plotted against τ for different levels of I_2 because it shows the system response with respect to a large or small change in current. It shows that as changes in current become small with respect to DC current, they approach the small signal model. Figure 8.5 shows this is indeed the case by plotting the small signal solution for the same DC currents. This provides the necessary information to determine response time for any given mixture of practical input signals.
Figure 8.4: Response time τ, of the SIM for various changes in current ε, for values of I_2 which are practically attainable in SIM operation. Capacitance used in this figure is 1.5 pF.

Figure 8.5: The small signal response time for a system with small current signals no larger than one tenth the DC current signal. The resistance seen by the small signal is set by the DC current. Capacitance = 1.5 pF.
8.5 Mixed Input Frequency Response Measurement

Frequency response testing of the SIM in with mixed input current is illustrated in figure 8.6. Mixed input frequency response of the SIM was measured on a high speed test chip with sockets to accept a fiber coupled FCI-InGaAs 1.5 pF photodiode as the current source and TO-8 can which contained the packaged SIM. The chip contributed an additional .7 pF of parasitic capacitance. Two lasers illuminated the photodiode to set the AC and DC current intensity. The DC laser consisted of a generic 1330 nm fiber-coupled laser diode. The AC laser was an externally modulated 1550 nm Agilent 83433A Lightwave Transmitter. An Agilent 33250A function generator provided the modulation signal to the AC laser source. Power for each laser source was coupled into individual single mode fibers and passed through individual JDS Uniphase HA9 optical attenuators to control both signal intensities. The light sources were then coupled together with a fiber coupler before connecting to the fiber coupled InGaAs photodiode. Two Keithley high-voltage 2410 and 2400 source meters supplied the bias applied to the photodiode and SIM and also monitored hole current leaving the photodiode and electron current generated at the SIM collector. The mixed output electron current from the SIM passed through a pico-second pulse lab 5530A bias tee where the AC and DC portions of the output signal were separated. The DC current returned to the Keithley source meter biasing the SIM. AC current passed through the bias tee to a Femto HCA 100M-50K-C fixed gain Trans-Impedance Amplifier (TIA) or a Femto DHPCA-100 variable gain TIA. Output from the TIA was displayed on a Tektronix TDS 340A Oscilloscope and the 3 dB signal was determined when the voltage peak reached .707 of its initial value.
With the pathway through the SIM shorted and the fixed TIA set to amplify the SIM output at 50 kV/Amp, the frequency response of the chip setup was measured at 80 MHz. In this case the limiting element is the function generator. With the variable gain TIA, the bandwidth changes depending on the amplifier gain. The gain was always kept low enough to ensure that the bandwidth of the TIA was several octave greater than the measured bandwidth of the SIM. This ensured that the output signal from the SIM did not fall off prematurely due to the amplifier. This was also double checked at times with the fixed gain 100 MHz bandwidth amplifier. Placing a fixed and known resistance in the path of the electron current from the photodiode to mimic the input resistance of the SIM gives a response time equal to the resistance of the resistor multiplied by the junction capacitance of the photodiode plus .7 pF due to parasitics on the chip.

8.6 Collector Induced Effects

The frequency response of the SIMs measured in the described manner are plotted below in figure 8.7. As seen, a significant difference exists between the theoretical and actual
measurements. While theoretical and measured lines are of roughly the same slope, a large gap separates them. This would appear to be due to a large and possibly fixed resistance in series with the input resistance. In reality, this large resistance is caused by a subtle interplay between several different factors external and internal to the SIM.

![100 nA DC Measured and Calculated](image)

Figure 8.7: Measured and theoretical 3 dB frequency response vs. change in input current 1 uA and 100 nA DC input currents. The theoretical model is the mixed current model in equation 8.25.

The key internal component is the collector. It has an effect on the band structure of the SIM that is similar to the effect that Drain Induced Barrier Lowering (DIBL) has in a MOSFET [20]. DIBL occurs in MOSFETs when the field from the reverse biased drain is large enough to
lower the barrier seen by electrons in the source. Mild effects of DIBL cause an abnormally large flow of electrons to through the device when the gate is above threshold. A more severe case of DIBL causes the current flowing through the device to become wholly dependant on drain voltage. In this case punch through typically occurs [64]. In effect the potential on the drain causes the source to over forward bias. This same effect is seen in the surface structure of the SIM. In this case the reverse biased collector sufficiently depletes the region between itself and the input to lower the barrier at the input (see figure 8.3). This creates a positive bias on the p side of the pn junction input and forward biases the junction. However, unlike the MOSFET source, the SIM input is not connected to ground. It is connected to a photodiode. Because a photodiode acts as an ideal current source for a large range of voltages, the current through the input is set by the photodiode. Consequently the input voltage is forced to rise to a voltage proportional to bias from the collector. As previously mentioned a change in current from the photodiode will induce a change in voltage at the input, however the input must now make a greater change in voltage to accommodate the change in current. Thus an increase in collector voltage has a negative effect on SIM frequency response as seen in figure 8.8.

Further investigation to determine the extent that Collector Induced Barrier Lowering (CIBL) causes the input voltage to change abnormally with input current was performed on an Agilent 4156 Semiconductor Parameter Analyzer. The parameter analyzer is used often to determine the DC gain, breakdown voltage, and leakage currents of newly fabricated SIMs. Previous tests used an external photodiode as a current source (see figure 6.12). While this is useful in showing that the SIM can amplify current from any photodiode, the presence of the photodiode at the SIM input isolates the input from the parameter analyzer probe such that the change in voltage at the input with respect to current can no longer be measured.
Figure 8.8: As bias is applied to the SIM collector, the frequency response of the device drops.

Figure 8.9: Testing setup using an Agilent 4159 Semiconductor Parameter Analyzer to discover a collector induced voltage swing at the input.
Removing the photodiode and probing the SIM input with the parameter analyzer current source for discrete collector voltages (figure 8.9) shows the dramatic swing in input voltage vs. current as bias on the collector increases in figure 8.10. Similar swings in input voltage are manifest in SILVACO simulations and shown in figure 8.11.

Figure 8.10: Measured change in voltage vs. current at the input of the SIM due to changes in collector potential.
The abnormally large change in voltage necessary to change current at the input is the cause of higher than expected input resistance. Of further insight is the fact that while CIBL is seen in simulation, it appears to have no effect in simulations involving frequency response measurement. This is primarily due to the lack of capacitance in the SIM. Simulated SIMs manifest capacitances in the femto-Farad range. Consequently the response time required for a voltage change at the input was quite small due to an absence of significant capacitance.

Figure 8.12 shows the measured input resistance of the SIM with respect to input current for several different bias voltages on the collector. Closer examination reveals that the resistance induced by the collector is fairly constant a wide range of input currents at each bias point.

Figure 8.11: Simulated change in voltage vs. current at the input of the SIM due to changes in collector potential from SILVACO. Substrate doping concentration 1e14 cm⁻³.
8.7 Elimination of Collector Induced Effects on the Input

Methods to eliminate CIBL are most easily discovered by examining methods used to eliminate or reduce DIBL. Other methods inherent in devices which do not experience such field effects also provide possible insights.

Several features make SIMs and MOSFETS susceptible to barrier lowering. The low doping of the region between the source and drain in a MOSFET or input and collector in a SIM are necessary and desirable for different reasons. In the case of the MOSFET, the low doping allows the region beneath the gate to be quickly inverted, thus allowing the formation of an
electron channel between source and drain. In the case of the SIM the light bulk doping allows the formation of a large, high field depletion region between the input and collector which provides the mechanism for impact ionization. DIBL in MOSFETs is most easily controlled increasing the doping in the channel between the source and drain, however a trade off is that the gate oxide must also be decreased to still rapidly deplete the channel [65]. In the case of the SIM, an increase in bulk doping decreases the field uniformity of the multiplication region potentially causing less multiplication gain and increased noise.

In reality it is not necessary to dope the entire region between the input and collector. The only region of concern is the pn junction on the input. Placing a heavily doped p jacket around the n well input would most likely provide the barrier necessary to withstand high collector voltages. In such a case, the SIM would resemble something the structure seen in figure 8.13.

One reason why such confidence is placed in such a simple solution is from CIBL tests run on npn BJTs in a common base configuration. The narrow base in the BJT is heavily doped to allow better electron transport and yet easily withstood collector voltages well in excess of 40 volts. SIMs which received a .5 micron deep boron implant at 1e16 cm\(^{-3}\) and 1e17 cm\(^{-3}\) exhibited improved resistance to CIBL as well. However, because the implant dose was over the entire surface, they formed a junction with the collector which caused premature breakdown in the case of the 1e17 cm\(^{-3}\) doping. Furthermore none of these boron implanted SIMs exhibit gain.

Simulations of the structure seen in figure 8.13a in Silvaco shows that implementation of a heavily doped p-type jacket around the input keeps the input voltage from swinging relative to collector voltage.
Figure 8.13: A surface SIM that potentially resists barrier lowering due to the collector at the input. a) The P+ dopant acting as a jacket around the n-well input b) keeps the built in voltage θ_{bi} from being affected by changes in the collector voltage. c) Simulated input current vs. input voltage in Silvaco for the structure seen in a).
The simulated change in input voltage with respect to input current for different collector voltages is seen in figure 8.13c.

8.8 P-Jacket Acceptor Concentration

The dopant necessary to protect the input from the field generated by the collector can be calculated by realizing that the field necessary to consume a dopant volume is given by

$$E = \frac{qN_A W_D}{\varepsilon_s},$$

where E is the electric field, N_A the donor dopant, W_D the jacket width and ε_s the silicon permittivity. Since the field at which breakdown occurs in silicon is roughly 3×10^5 V/cm, the dopant must be strong enough to withstand such a field so that breakdown occurs before jacket depletion. Substituting in the necessary values to equation 8.27 and solving for N_A gives

$$N_A = \frac{1.97 \times 10^{12}}{W_D}.$$

Thus the donor density required depends on the width of the jacket. The doping required in the jacket is not unrealistically high. Assuming the jacket width to be as narrow as 100 nm requires an acceptor concentration of roughly 1×10^{19} atoms/cm2. The assumptions involved in achieving this number are quite robust. First it assumes the epitaxial region of the SIM to be completely intrinsic. In this way the field is quite large and uniform in magnitude from collector to input. Since the highest field region is usually several microns away from the input, these numbers assume that the input and the collector and adjacent to one another.
8.9 Conclusion

The derivation of SIM input resistance for a broad range of mixed currents indicates a significant improvement in frequency provided that input barrier lower caused by the collector are mitigated. Despite the effects of CIBL a mixed current injection scheme shows improvement when compared to a purely AC input signal. Frequency response in a mixed current scheme will further improve as the effects of CIBL are mitigated through jacket doping of the input.
9 CONCLUSION

9.1 Introduction

The SIM was originally envisioned as a low noise current amplifier to be integrated into long and short haul fiber optic systems. This advantage would forgo the need for epitaxially grown APDs which incorporate absorption and multiplication regions into the same device. Rather, optimization of detection and multiplication could be done separately. Naturally, such a realization would significantly reduce costs and improve performance. While implementation of the SIM in such systems may not be a reality given current physical limitations, many systems exist which could benefit from the SIM, especially as further improvements to the gain mechanism and possible breakthroughs in frequency response are realized.

9.2 Future SIM Work

9.2.1 Substrate Current Injection

A critical factor in improving the SIM is the AC gain. An improvement in gain would allow for detection of smaller input signals. Smaller AC inputs would cause less swing on the input voltage and allow for a higher frequency response. As discussed previously in Chapter 6, confinement and control of high fields is critical to improving gain. While implementing a buried oxide structure with circular pedestals has improved gains, only so much can be expected in a scenario where electrons ionize at the surface of the device. If further improvements in gain
are to be expected then the impact ionization must occur in the bulk of the semiconductor. This can be accomplished by moving the input to the substrate and leaving the collector on the surface. Hole collection would have to be moved to the surface. An illustration of such a device is seen in figure 9.1.

Figure 9.9.1: SIM where electrons are injected from the substrate.
In such a device, a heavily n doped wafer would need a slightly p doped epitaxial region grown on top of it. Under operation, the collector would be reverse biased with respect to the ring style P+ hole sink doped into the epitaxial layer. A significant reverse bias would also exist between the collector and input at the substrate. Thus the field exerted at the collector is split between the substrate and collector ring. This depletes the lightly doped epitaxial region beneath the collector and creates a high impact ionization region. Doping of the collector should also be changed to produce the most uniform field to injected electrons to promote uniform impact ionization. The greatest challenge to this design is guarding against premature device breakdown on the surface between the collector and hole sink. Here an element used commonly in APDs is implemented. By incorporating a heavily n doped floating guard ring between the collector and hole sink, much of the surface field strength is dissipated with the ring.

Creating a substrate injection SIM involves several doping steps, the most unusual being the epitaxial growth of a different type of silicon than the substrate. However, the need for buried oxide devices and circular pedestals to confine electrons within high field regions is no longer necessary. All the confinement can be done without dry etching or three dimensional structures on the silicon surface.

9.2.2 Resonant Tunneling Injection

Resonant tunneling injection is another possibility to improve SIM frequency response. While most resonant tunneling diodes require epitaxial growth of different bandgap semiconductors to create the necessary quantum well, a MIIM (Metal Insulator Insulator Metal) diode could be made by depositing two dielectrics of selected bandgap materials on the silicon surface. A metal layer on top of these dielectrics would effectively create a MIIS (Metal Insulator Insulator Semiconductor) resonant tunneling diode. By using a resonant tunneling
diode, electrons could tunnel into the depletion region of the SIM instead of relying on thermionic emission or diffusion. This method, has undergone some theoretical testing, but is for the most part untested. Since a resonant tunneling structure is still diode, the IV characteristics are still diode-like. However, a resonant tunneling diode turn on is much faster. This is manifest in the IV curve by a steeper increase in current vs. voltage. Thus the voltage across the diode changes less with input current than a conventional diode. Consequently, floating voltage is decreased, and input resistance along with it. This change in the physics of injecting current into the SIM may greatly improve frequency response.

9.2.3 Noise and Sensitivity

While several references to operational noise have been made in this work, they are with reference to silicon in general or a qualitative observation of the SIM function. Actual quantities measurements of excess noise with respect to gain have not be made. A most interesting factor, which could be determined with such measurements, would be to discover what effect impact ionization near the surface has on excess noise.

Early in SIM research, several tests were conducted to determine the sensitivity of the SIM. However, these tests were all conducted using a DC input current with an HP/Agilent 4156 semiconductor parameter analyzer. While these tests proved instructive, it is likely they tell only part of the story. It is very possible that just as gain, AC and DC measurements are different. In the case of sensitivity, an AC signal creates more resistance in the SIM because of the change in current. Thus the sensitivity will most likely decrease as electrons waiting in enter the SIM recombine due to traps or recombination centers in the silicon. This is merely a theory as no AC sensitivity work is yet to be undertaken.
9.3 SIM Applications

Despite the low frequency response of the SIM, several applications exist which could benefit from its low noise current amplification properties. It is also important to realize that operating the SIM in a different regime can significantly increase the frequency response. In a regime where the SIM input is voltage driven, frequency response increases. This is because the voltage at the node is no longer governed by the current flowing through it, rather the current is governed by set voltages from an external voltage source. The nature of this voltage source is undetermined. It is also very probable that such a voltage source does not need low noise current amplification. In cases of current amplification from current sources, several lower frequency application exist which could benefit from SIM style amplification. In the realm of optoelectronics, semiconductor CCDs with bandgaps too low to create avalanche multiplication internally could be integrated onto a silicon chip of SIMs. These SIMs would take the current input from the photodiodes and perform the initial amplification. Such a configuration would easily operate at video speeds.

For still photography, SIMs with a gain of 8 would improve the sensor sensitivity by 3 stops. In conventional CCD cameras, increasing the sensitivity by one stop means that the light sample taken by the CCD is cut in half. A smaller sampling time cuts the collected current in half. Bringing the final image up to full exposure requires double the amplification. This is accomplished by transistor amplifiers. The noise introduced from the amplification leads to degradation of the final image. Further reduction in CCD sampling time requires further amplification of the current and creates more and more noise which degrades the image. Pre-amplification with the SIM would allow shorter exposures with less amplifier noise in the final image.
A non-optical application for which the SIM bandwidth is already perfectly suited is as a microphone preamplifier. Several different microphones exist, and the physics for each of them vary. Consequently, the SIM would not be suitable for condenser or electret condenser microphones which measure membrane capacitance to convert waves from acoustic to electric.

Figure 9.9.2: Two SIMs pre amplify current generated from a microphone before amplification in a summing amplifier.
Crystal microphones which measure voltage across piezo-electric crystals are also poorly suited for the SIM. However, dynamic and ribbon microphones are well suited as inputs to the SIM. These microphones generate current proportional to acoustic waves as these acoustic waves move a metallic transducer within a magnetic field. The output current from the transducer is then fed into the SIM which acts as a low noise preamplifier. This would improve the quality of recordings by reducing the amount of amplifier noise present in the recording. One problem with amplification of a typical AC signal of this fashion is that the SIM in its current state only amplifies electrons. Injected holes recombine in the n well at the input. Thus two SIMs are necessary to capture the entire signal one on each end. Figure 9.2 illustrates two SIMs used to amplify current from a dynamic microphone. As shown, output current from the SIMs is then summed and amplified. Such a configuration would greatly enhance the sensitivity of dynamic and ribbon microphones and thus make them more useful in many applications.

9.4 Conclusion

While much of this work is wholly untested and documented, this is what makes it future work. Current understanding of the SIM justifies many of the assumptions made in these devices or operating modes. Doubtless other useful applications also exist. This chapter gives a taste of just a few of the many possibilities.

In conclusion of this work as a whole, several challenges exist which reduce the speed at which a change in current be can electrically injected into a junction of a semiconductor. This fact explains much of the frequency response difficulties of the SIM when operated with a photodiode with low input currents. However, tremendous discovery has accompanied the research involved in developing the SIM. The limiting factor which physically limits the SIM
frequency response has been discovered and documented. Reduction of CIBL will allow physical models to better match theoretical ones. The need to control and confine geometries within the high field regions of the SIM have also permitted increased gains. And increased feature size of SIM devices has significantly reduced parasitic space charge resistances to increase gain without reducing frequency response. A clear understanding of the physics of a device leads to further innovation. Some of this innovation has been discussed, but most of it is yet to flourish.
REFERENCES

175

LIST OF PUBLICATIONS

A APPENDIX A. FABRICATION PROCEDURES

A.1 SIM Fabrication Procedure for Rectangular Buried Oxide SIMs

- Use the Wacker wafers with a P+ substrate and a P- EPI layer. Make sure they are not reclaim wafers because reclaim wafers have no EPI layer left.

A.1.1 Step 1—KOH Etch Mask, and KOH Etching

1) Create the KOH etch mask by growing 1200 Angstroms of thermal oxide on the wafers. Do it quickly using wet oxide. Make sure the bubbler has a 10:1 ratio of H$_2$O:HCl. This is always critical. It really helps reduce contamination in the wafer. This is manifest by an improvement in leakage currents. To grow the oxide. Follow Oxide Growth Chart #1.

2) After oxide growth, dehydrate wafers, apply HMDS and Spin on AZ 2020 at 3000 RPMs. Soft bake for 60 seconds at 110° C on the hotplate. Use N+ well mask and the ISCH recipe on the south aligner. Only change the exposure time in the ISCH program to 20 seconds.

3) DON’T FORGET the post exposure bake before you develop. Post exposure bake on hotplate for 60 seconds at 110° C.

4) Develop wafer in AZ 300 MIF developer. It usually takes awhile sometimes 3 minutes. It requires some eyeballing. The easiest way to tell when the resist is developed is that the small fine tuning alignment marks are developed into the resist.
5) Rinse the wafer well and hard bake on the hotplate at 110° C for 5 minutes.

6) Do an O₂ descum in the Planar Etcher (PE2) for 15 seconds at 50 watts. Then turn the wafers 180° in the PE2 and etch for another 15 seconds at 50 watts.

7) Remove the thermal oxide to create the KOH etch mask by dipping in Buffered Oxide Etch (BOE) until the surface of the wafer becomes mostly hydrophobic. Then over-etch for another 60 seconds. This over-etching will cause undercutting on the resist and help increase in spacing between the wells thus making devices of smaller spacing useful.

8) Rinse the wafer in De-Ionized Water (DI Water) for at least 60 seconds.

9) Remove the remaining resist in NMP on a hotplate set to 65° C. Allow the NMP about 20 minutes to fully remove the resist. Then rinse in DI Water BEFORE using Isopropyl Alcohol (IPA) or Acetone.

10) Start the KOH etching process by adding DI Water to the KOH etching bath. Fill the water to the level of the KOH in the glassware.

11) Turn on the heat to the bath by powering up the Modutek hot bath controller. The temperature should be preset to 50° C. This is done by pressing the “Timer” button followed by the “Reset” button on the Modutek controller. Any additional information on the controller and bath can be found at http://www.ee.byu.edu/cleanroom/Hot_Pot.phtml a PDF of the manual can be found at http://www.ee.byu.edu/cleanroom/Online_Manuals/Hot_Pot%20Controller.pdf

12) Make sure your KOH solution is about 75% KOH solution from the container and 25% DI Water by volume. Water is important in this whole reaction. Without sufficient amounts of water, the wafer will become pitted and not etch smoothly.

180
13) Allow about 60 minutes for the bath and KOH to stabilize in temperature. Etch wafers one at a time. Etch for 10 minutes and then check the etching progress with the profilometer. The target height is 3 um. Typically etch to about 3.2 um.

14) After proper pedestal height is achieved rinse the KOH solution off. It is very viscous.

Rinse in DI Water for 10 minutes.

15) Etch off remaining KOH etch mask and backing oxide on wafers in BOE.

16) Rinse and get ready for oxide growth.

A.1.2 Step 2—Oxide Growth and Diffusion Mask Planarization

1) Do a 3 minute, 50 watt descum in the PE2 on the backs and then on the front of the wafers.

2) Quick dip in BOE and rinse in DI Water.

3) Grow 5000 Angstroms of thermal oxide in tube furnace according to Oxide Growth Chart #2. Do not forget the 10:1 DI Water:HCl ratio in the bubbler.

4) After oxide growth, dehydrate wafers apply HMDS and spin on SU-8 3005. BE SURE TO USE THE SMALL CHUCK WHEN YOU SPIN TO KEEP SU8 OFF THE BACK OF THE WAFER. Spin speed for 5000 RPM with a ACL of 1000 for 60 seconds. Then bake for 5 minutes at 65° C then ramp to 95° C and hold for another 5 minutes. Remove wafer and cure resist by exposing wafer under the south aligner for 60 seconds.

5) Hard bake resist with 5 minutes at 65° C then ramp to 95° C and hold for 5 minutes. Then ramp to 110° C and hold for 5 minutes then to 150° C for 5 minutes THEN ramp to 200° C for 10 minutes. Then turn off hotplate an allow wafers to cool on cooling hotplate until hotplate temperature is below 90° C.

6) Remove wafers from hotplate and get ready to polish with the CMP.
7) The CMP directions are found at http://www.ee.byu.edu/cleanroom/cmp.phtml

8) Use the SU8-5 recipe in the CMP and the Eminess Ultrasol A-15 slurry. It works most excellently to polish SU8. Dilute the slurry about 10:1 or 5:1 DI Water to slurry. The 5 gallon dilute slurry bucket is labeled “SIM Group A-15 DIL.” The concentrated slurry bucket is labeled “SIM Group.”

9) Be sure to stir the diluted slurry while polishing to that the mixture does not settle.

10) Polish the SU8 down until the tops of the devices pedestals have the oxide polished down to bare silicon.

11) Rinse polished wafers in DI Water. Place in Nanostrip on a hot plate at 90° C for at least 1 hour.

A.1.3 Step 3—Diffusion

1) Remove wafers from Nanostrip. Rinse thoroughly in DI Water. Dehydration bake the wafers in the oven at 150° C for 30 minutes. Remove wafers and do a quick BOE dip. Rinse in DI Water and place in the PE2 chamber and vacuum down. Do NOT activate the plasma. This vacuum chamber is merely to pull water out of the wafer without growing an oxide on the wafer surface.

2) Remove the Honeywell P-8548 Spin on Dopant (SOD) from the refrigerator at least 4 hours before applying the SOD to the wafers.

3) Use Pipets and the Headway spinner to apply SOD. Use a pipet to cover 80% of the wafer with SOD then spin the wafer at 500 RPM for about 2 seconds and slowly ramp to 3000 RPM. After 20 seconds, remove the wafer and place it on a hotplate at 150° C for 60 seconds.

4) Diffuse wafers in the furnace according to Diffusion Chart #1.
5) Immediately etch remaining SOD from the wafers after they come out of the furnace. It should only take about 45 seconds in BOE. Then rinse in DI Water.

6) You can check if the glass is removed by applying voltage to the N+ wells and substrate and observing the current.

A.1.4 Step 4—Metallization

1) Dehydrate wafers, apply HMDS, and a thick layer of AZ 3330 photoresist. This is done by using the small chuck on the spinner so the resist does not seep onto the back of the wafer and using a max spin speed of 3000 RPM with ACL of 500. This helps the resist clear the pedestals.

2) Soft bake the wafer for 12 minutes at 90° C on a hotplate. Expose on the south aligner with metal mask on the ISCH program. Edit the program and change the exposure time to 20 seconds.

3) Develop in AZ 300 MIF developer. This takes several minutes. Verify development under the microscope and ensure that the resist has fully developed.

4) Descum in the PE2 30 seconds at 50 watts and turn the wafers 180° and do another 30 second descum at 50 watts.

5) Prepping the wafer for metallization needs to be done right before placing the wafer into the sputterer.

6) Quick dip in BOE and rinse in DI water. Then dip into a 1:1 Di Water:HCl solution for 30 seconds. Rinse and dry and place directly into the sputterer.

7) Pump the sputter to 4 e-6 torr. Then deposit TiW on Cathode 3 DC sputtering at 150 mA current for 1000 seconds. This gives about 70 nm for TiW as a barrier metal.
8) Vent the sputterer and place the wafer into the thermal evaporator and deposit 1 um of aluminum on top of the TiW.

9) Vent the evaporator and flip the wafers to deposit 300 nm of aluminum on the back side.

10) Lift off the front metal in acetone. This requires a fair amount of scrubbing with a foam tip to remove the metal. Rinse in IPA and acetone and blow dry.

11) Anneal in forming gas environment at 450°C for 30 minutes. Run the forming gas on full flow on the pin gauge.

12) The wafer is finished.

A.2 SIM Fabrication Procedure for Circular Pedestal SIMs

- Use the Wacker or Montco wafers with a P+ substrate and a P- EPI layer. Make sure they are not reclaim wafers because reclaim wafers have had the EPI layer polished off.

A.2.1 Step 1—RIE, ICP Etching

1) Spin SU-8 2002 onto the wafers and soft bake. Then expose the wafers with the first N+ well mask for 8 seconds. Don’t forget the post-exposure bake!

2) Develop in SU-8 developer and rinse in IPA and then blow dry.

3) Descum wafers at 150 W for 2 minutes in the PE2.

4) RIE etch wafers in the Trion etcher one at a time. Each wafer requires several recipes to etch properly. Training is required!

5) Make sure the Trion chamber is clean by running the “Clean-New” recipe for six minutes on both steps.
6) Load the wafer and etch it with the “Evan-Bosch-Si3” etch. This etch takes about 20 minutes and must be run twice to achieve a pedestal height of roughly 2.5 um.

7) Following the etching of one wafer, run the “Clean-New” etch as described previously to clean the chamber.

8) Load the etched wafers into the PE2 and do another descum etch at 150 W for 2 minutes. This removes any teflons that have built up on the wafer.

A.2.2 Step 2—Oxide Growth and Diffusion Mask Planarization

1) Quick dip in BOE and rinse in DI Water.

2) Grow 5000 Angstroms of thermal oxide in tube furnace according to Oxide Growth Chart #2. Do not forget the 10:1 DI Water:HCl ratio in the bubbler.

3) After oxide growth, dehydrate wafers apply HMDS and spin on SU-8 3005. BE SURE TO USE THE SMALL CHUCK WHEN YOU SPIN TO KEEP SU8 OFF THE BACK OF THE WAFER. Spin speed for 5000 RPM with a ACL of 1000 for 60 seconds. Then bake for 5 minutes at 65°C then ramp to 95°C and hold for another 5 minutes. Remove wafer and cure resist by exposing wafer under the south aligner for 60 seconds.

4) Hard bake resist with 5 minutes at 65°C then ramp to 95°C and hold for 5 minutes. Then ramp to 110°C and hold for 5 minutes then to 150°C for 5 minutes THEN ramp to 200°C for 10 minutes. Then turn off hotplate and allow wafers to cool on cooling hotplate until hotplate temperature is below 90°C.

5) Remove wafers from hotplate and get ready to polish with the CMP.

6) The CMP directions are found at http://www.ee.byu.edu/cleanroom/cmp.phtml

7) Use the “SU8-5” recipe in the CMP and the Eminess Ultrasol A-15 slurry. It works most excellently to polish SU8. Dilute the slurry about 10:1 or 5:1 DI Water to slurry. The 5
gallon dilute slurry bucket is labeled “SIM Group A-15 DIL.” The concentrated slurry bucket is labeled “SIM Group.”

8) Be sure to stir the diluted slurry while polishing to that the mixture does not settle.

9) Polish the SU8 down until the tops of the devices pedestals have the oxide polished down to bare silicon.

10) Rinse polished wafers in DI Water. Place in Nanostrip on a hot plate at 90˚ C for at least 1 hour.

A.2.3 Step 3—Diffusion

1) Remove wafers from Nanostrip. Rinse thoroughly in DI Water. Dehydration bake the wafers in the oven at 150˚ C for 30 minutes. Remove wafers and do a quick BOE dip. Rinse in DI Water and place in the PE2 chamber and vacuum down. Do NOT activate the plasma. This vacuum chamber is merely to pull water out of the wafer without growing an oxide on the wafer surface.

2) Remove the Honeywell P-8548 Spin on Dopant (SOD) from the refrigerator at least 4 hours before applying the SOD to the wafers.

3) Use Pipets and the Headway spinner to apply SOD. Use a pipet to cover 80% of the wafer with SOD then spin the wafer at 500 RPM for about 2 seconds and slowly ramp to 3000 RPM. After 20 seconds, remove the wafer and place it on a hotplate at 150˚ C for 60 seconds.

4) Diffuse wafers in the furnace according to Diffusion Chart #1.

5) Immediately etch remaining SOD from the wafers after they come out of the furnace. It should only take about 45 seconds in BOE. Then rinse in DI Water.
6) You can check if the glass is removed by applying voltage to the N+ wells and substrate and observing the current.

A.2.4 Step 4—Metallization

1) Dehydrate wafers, apply HMDS, and a thick layer of AZ 3330 photoresist. This is done by using the small chuck on the spinner so the resist does not seep onto the back of the wafer and using a max spin speed of 3000 RPM with ACL of 500. This helps the resist clear the pedestals.

2) Soft bake the wafer for 12 minutes at 90°C on a hotplate. Expose on the south aligner with metal mask on the ISCH program. Edit the program and change the exposure time to 20 seconds.

3) Develop in AZ 300 MIF developer. This takes several minutes. Verify development under the microscope and ensure that the resist has fully developed.

4) Descum in the PE2 30 seconds at 50 watts and turn the wafers 180° and do another 30 second descum at 50 watts.

5) Prepping the wafer for metallization needs to be done right before placing the wafer into the sputterer.

6) Quick dip in BOE and rinse in DI water. Then dip into a 1:1 Di Water:HCl solution for 30 seconds. Rinse and dry and place directly into the sputterer.

7) Pump the sputter to 4 e-6 torr. Then deposit TiW on Cathode 3 DC sputtering at 150 mA current for 1000 seconds. This gives about 70 nm for TiW as a barrier metal.

8) Vent the sputterer and place the wafer into the thermal evaporator and deposit 1 um of aluminum on top of the TiW.
9) Vent the evaporator and flip the wafers to deposit 300 nm of aluminum on the back side.

10) Removing metal from a liftoff photoresist mask can be difficult when a planetary is used. The planetary is necessary to coat the sidewalls of the pedestals. Tape liftoff on the front of the wafer is most effective. Take a strip of scotch tape long enough to traverse the wafer and press firmly onto the wafer, then pull off. Repeat this until the whole wafer has been done.

12) Anneal in forming gas environment at 450° C for 30 minutes. Run the forming gas on full flow on the pin gauge.

13) The wafer is finished.
A.3 SIM Process Charts

![SIM Oxide Growth Chart #1](image)

Figure A.1: SIM Oxide Growth Chart #1: This chart shows the necessary step gas flows, step temperatures, and step durations to grow roughly 1200 angstroms of thermal oxide to act as a KOH etch mask in subsequent steps. The low temperature provides the necessary oxide grow while minimizing the amount of diffusion within the EPI layer.
Figure A.2: SIM Oxide Growth Chart #2: This chart shows the necessary step gas flows, step temperatures, and step durations to grow 5000 angstroms of thermal oxide. This oxide acts as an insulator and passivation layer for the SIM.
Figure A.3: SIM Diffusion Chart #1 for P-8545 Spin on Dopant (SOD): This chart shows the necessary step gas flows, step temperatures, and step durations to diffuse phosphorus into the SIM pedestals to a depth of roughly 1.3 um. It is important that sufficient oxygen is always flowing into the furnace during the diffusion. Oxygen allows the phosphorus in the SOD to diffuse by turning the phosphoric acid (H₃PO₄) within the mixture into Phosphorus Pentoxide (P₂O₅). It is important to completely oxidize all the H₃PO₄ within the SOD otherwise it will form a bond with the silicon that cannot be removed unless it is first oxidized. Following diffusion, it is important to immediately dip the wafers in Buffered Oxide Etch (BOE) to completely remove the SOD before the P₂O₅ reacts with the moisture in the air to form H₃PO₄.