Jul 1st, 12:00 AM

The Use of Third Generation Air Quality Modeling Systems for Web Operational Real-time Forecasting Decision Support Systems: Spain Case

R. San José
J. L. Pérez
J. L. Morant
F. Prieto
R. M. González

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

https://scholarsarchive.byu.edu/iemssconference/2008/all/225
The Use of Third Generation Air Quality Modeling Systems for Web Operational Real-time Forecasting Decision Support Systems: Spain Case

R. San José, J.L. Pérez, J.L. Moranta, F. Prieto and R.M. González

Environmental Software and Modelling Group, Computer Science School, Technical University of Madrid (UPM), Campus de Montegancedo, Boadilla del Monte 28660 Madrid (Spain), (roberto@ifi.upm.es).

Department of Meteorology and Geophysics, Faculty of Physics, Complutense University of Madrid (UCM), 29040 Madrid (Spain), (barras@fis.ucm.es).

Spanish Observatory for Sustainability, Universidad de Alcalá, plaza de San Diego, s/n 28801 Alcalá de Henares (Madrid), (fprieto21@gmail.com).

Abstract: New generation of electric power plants and industrial plants are important emission sources generally surrounding large, medium and small cities. Future tendencies on energy production envision that the growing demand of electricity will push forward the need to construct more electric power plants with different combustion material. In Spain, the growing electric energy demand has conducted to a growing market on natural gas combined cycle electric power plants. The air quality impact of such a plant is considerable smaller than the old ones but the modern EU Air Quality legislation is starting to obligate to control the air quality impact in real-time and forecasting mode. This tool presents the first implementation in Spain over a 4 group combined cycle electric power plant, located in the surrounding area of Madrid Community (Spain) by using the MM5-CMAQ-EMIMO modeling tool. The MM5 model is widely used all over the world developed by PSU/NCAR (USA) and the CMAQ model is the so-called Community Multiscale Air Quality Modelling System developed by EPA (USA) and finally EMIMO is an anthropogenic and biogenic emission model to produce hourly emissions per pollutant per squared kilometer. The system is accessed over the Internet for the environmental authorities and company managers under daily basis. The tool produces alerts every day according to the results of the model. Final decision related to possible shut-down for a limited period of time of the different power plant groups – in case of exceeds of EU Directive limits due to the emissions of the different power groups – is taken by environmental authorities in real-time. The system prototype was part of the EUREKA project TEAP (A tool to evaluate the air quality impact on industrial plants) (2001-2003). The same approach can be used for any other industrial plant and also for any emission source apportionment such as traffic over specific sections of the model domain or even specific pollutants over determined areas in the model domain.

Keywords: Air Quality Modelling, Industrial impact, real-time control.

1. INTRODUCTION

The air quality impact of industrial plants is an essential issue in air quality assessment and modelling which is becoming more important due to the more strict EU legislation in air quality standards. The 2002/3/EC Directive of the European Parliament and of the Council
of 12 February 2002 related to ozone in ambient air provides information related to short-
term action plans at the appropriate administrative levels. In accordance with this
legislation, industrial plants are being requested by environmental authorities to have
appropriate control systems to provide in real-time and forecasting mode information
related to the relative impact of their industrial plants in the forecasted pollution levels – in
particular on the O3, SO2, NOx, CO and PM10 levels which are limited by different EU
Directives -. The capability to reduce specific emissions in real-time according to a forecast
for a specific area and period of time is actually a challenging issue. In the past years, this
objective was limited due to the limited computer power and the cost of vector parallel
computers. Nowadays, cluster system composed by PC processors (3,4 Ghz or 3,6 Ghz)
provide an acceptable capability – once we have designed a proper architecture of the air
quality modelling systems – to run this complex systems in real-time and forecasting mode.

The concept of real-time in our case is related to the fact of taking appropriate decisions in
advance to avoid specific exceeds of the EU Directive limits. Following above Directive
the responsibility to design of short-term action plans, including trigger levels for specific
actions, is the responsibility of Member States. Depending of the individual case, the plans
may provide for graduated, cost-effective measures to control and, where necessary, reduce
or suspend certain activities, including motor vehicle traffic, which contribute to emissions
which result in the alert threshold being exceeded. These may also include effective
measures in relation to the use of industrial plants or products. In this application we focus
on the possible reduction of industrial activities – in our case, a combined cycle power plant
-.

The complete tool designed for this application is called TEAP (a Tool to Evaluate the Air
quality impact of industrial Plants) [San José et al., 1994, 1996]. This tool is designed to be
used by the environmental impact department at the industrial site. The tool provides a
response to air quality impact to industrial emissions in the form of surface patterns and
lineal time series for specific geographical locations into the model domain. The model
domain is designed in a way that the industrial source point is located approximately in the
centre of the model domain. The model domain can be as large as wished but a specific
nesting architecture should be designed for each case together with balanced computer
architecture.

The TEAP tool (an EUREKA-EU project) has the capability to incorporate different
modelling systems. In a preliminary stage we have tested the system with the so-called
OPANA model (ETC/ACC03). OPANA model [San José et al., 1996] stands for
Operational Atmospheric Numerical pollution model for urban and regional areas and was
developed at the middle of the 90’s by the Environmental Software and modelling Group at
the Computer Science School of the Technical University of Madrid (UPM) based on the
MEMO model (ETC/ACC03) developed in the University of Karlsruhe (Germany) in 1989
and updated on 1995, for non-hydrostatic three dimensional mesoscale meteorological
modelling and SMVGEAR model for chemistry transformations based on the CBM-IV
mechanism and the GEAR implicit numerical technique developed at University of Los
Angeles (USA) in 1994. The OPANA model has been used (different versions) for
simulating the atmospheric flow – and the pollutant concentrations – over cities and regions
in different EU funded projects such as EMMA (1996-1998), EQUAL (1998 – 2001),
APNNE (2000-2001). In these cases and others the model has become an operational tool
for several cities such as Leicester (United Kingdom), Bilbao (Spain), Madrid (Spain),
Asturias region (North of Spain) and Quito (Ecuador, BID, 2000). In all these cases the
model continue to operate under daily basis and simulates the atmospheric flow in a three
dimensional framework. The OPANA model, however, is a limited area model – which
means that the model domain is limited by the earth curvature – and the cloud chemistry
and particulate matter is not included (aerosol and aqueous chemistry).

Examples of “state-of-the-art” meteorological models are: MM5 (PSU/NCAR, USA), RSM
(NOAA, USA), ECMWF (Redding, U.K.), HIRLAM (Finnish Meteorological Institute,
Finland), etc. Examples of “state-of-the-art” of transport/chemistry models – also called
“third generation of air quality modelling systems” – are: EURAD (University of Cologne,
Germany), [Stockwell et al., 1977], EUROS (RIVM, The Netherlands), [Lagner et al.,
1998], EMEP Eulerian (DNMI, Oslo, Norway), MATCH (SMHI, Norrkoping, Sweden),
2. THE MM5-CMAQ MODELING SYSTEM

The CMAQ model (Community Multi-scale Air Quality Modeling System, EPA, US) is implemented in a consistent and balanced way with the MM5 model. The CMAQ model is fixed “into” the MM5 model with the same grid resolution (6 MM5 grid cells are used at the boundaries for CMAQ boundary conditions). As an example a domain architecture is showed in Figure 1 for an application in a combined cycle power plant in the south area of Madrid Community. MM5 is linked to CMAQ by using the MCIP module which is providing the physical variables for running the dispersion/chemical module (CMAQ) such as boundary layer height, turbulent fluxes (momentum, latent and sensible heat), boundary layer turbulent stratification (Monin-Obukhov length), friction velocity, scale temperature, etc. We have run the modeling system (MM5-CMAQ) with USGS 1 km landuse data and GTOPO 30” for the Digital Elevation Model (DEM) which can be substituted for any more accurate high spatial resolution landuse information in the implementation of the input data.

The system uses EMIMO model to produce every hour and every 1 km grid cell the emissions of total VOC’s (including biogenic), SO2, NOx and CO. EMIMO is a emission model developed at our laboratory in 2001. This model uses global emission data from EMEP/CORINAIR European emission inventory (50 km spatial resolution) and EDGAR global emission inventory (RIVM, The Netherlands). In addition the EMIMO (EMIssion Model) model uses data from DCW (Digital Chart of the World) and USGS land-use data from AVHRR/NOAA 1 km satellite information. The EMIMO model includes a biogenic module (BIOEMI) developed also in our laboratory based on the algorithms for natural NOx, monoterpene and isoprene emissions in function of LAI (leaf Area Index) and PAR (photosynthetic active radiation). The emission inventory is a model which provides in time and space the amount of a pollutant emitted to the atmosphere. In our case we should quantify the emissions due to traffic, domestic sources, industrial and tertiary sector and also the biogenic emissions in the three model domains with 9 km, 3 km and 1 km spatial resolution mentioned above.

The mathematical procedures to create an emission inventory are essentially two: a) Top-down and b) Bottom-up. In reality a nice combination of both approaches offers the best results. Because of the high non-linearity of the atmospheric system, due to the characteristics of the turbulent atmospheric flow, the only possibility to establish the impact of the part of the emissions (due to traffic or one specific industrial plant, for example) in
air concentrations, is to run the system several times, each time with a different emission scenario. The general scheme of application of a set of combined cycle power plants can be seen in Figure 2.

In this contribution we have applied the MM5-CMAQ modelling system over a power plant with 4 400 MW combined cycle power groups which are expected to operate simultaneously. The simultaneous simulations of the so-called ON run (the four groups running) and OFF1, OFF2, OFF3 and OFF4 runs – which are representing the air concentrations when switching off the first combined cycle power group, the second one and so on successively – is analyzed by generating the corresponding differences between ON-OFF1, ON-OFF2 and so on. These differences represent the respective impact of each of the successive switching off process until the OFF4 scenario which represent the complete disconnection of the 4 400 MW combined cycle power plant groups and the subsequent zero emissions from the power plant. The system was calibrated for 60 day selected periods by using 5 day periods per month along the 2004 year. Figure 3 shows the comparison between NO air concentration in Leganes monitoring station (located in the surrounding area of Madrid city) and the simulated NO concentrations.

Figure 4 shows the comparison between O3 hour observations and modeling results for several monitoring stations located in the surrounding area of Madrid. Note that the total amount of data is 8760 hours (100% of the year’s hours) and the correlation coefficient is 0.797.

The impacts – due to the high chemical non linearity involved – are analyzed respecting on the absolute concentration pollution values and these values respecting the EU Directive limits. The post-processing is done automatically and presented in the specifically designed Web site.

The system is operating since July, 1, 2005 with full success. The developed system provides 72 hours forecasts for the impact of the 4 independent 400 MW combined cycle power groups.

The access to the web site is restricted to environmental authorities and company authorized personnel. The system is operating from the Computer Center at Computer Science School at Technical University of Madrid (UPM) managed by the Environmental
Software and Modelling Group (ESMG). The system has been mounted over an 8-node 3.4 Ghz cluster platform. Figure 5 shows an example of the TEAP prototype mounted over a Petrochemical plant also in the South of Madrid Area (150 km away). In figure 6 we show the impact on O3 concentrations at a different location in the south of Madrid Community on September, 4, 2002, 15h00 GMT as obtained during the tests.

The O3 concentrations are increased up to 11 % over the levels (without the emissions from the power plant) and with decreases up to 14 %. The increased levels are located at distances between 10 – 20 km to the East of the power plant location (centre of the domain) and the decreased levels are located in the immediate surrounding areas of the power plant (center of the domain). Figure 7 shows the O3 percentage change during 120 hours simulation and when activating the power plant after 72 hours. We observe that in that specific location (4336,1770 m, UTM) we expect increases and decreases on O3 concentration in a range up/down 6%. The TEAP tool provides a full time and spatial information related to the absolute and relative impact of different emissions (different combined cycle power groups) in real-time and forecasting mode under daily operations with an 8-node cluster platform. The system is the first operating in Spain by using such a sophisticated 3rd Generation Air Quality Modelling System and it is expected to be installed in several other combined cycle power plants and in general in different industrial plants to help the local and regional authorities to identify the relative impact of the different industrial plants located in the surrounding area. The system can be adapted to identify the impact of traffic sources and also different scenarios.
Figure 5. TEAP web site to analyze the impact of a petrochemical plant located 150 km at the south of Madrid area.

Figure 6. O3 power plant concentrations impact at 15h00 on September, 4, 2002 for the 3 km spatial resolution model domain showing the areas with increase and decrease on O3 concentrations due to the emissions from the power plant.
3. CONCLUSIONS

The use of state-of-the-art (third generation of air quality models) air quality modelling systems such as MM5-CMAQ-EMIMO provides a robust capability to predict the air quality impact of industrial emissions in real-time mode. These models are usually complex codes which simulate all the atmospheric process and are capable to simulate the nonlinear chemical process in the atmosphere. Due to this non-linearity feature, the impact must be calculated by parallel runs in cluster parallel computer platforms. Each run simulates all the process in the atmosphere including all the emission sources but the different between one process and another is just the emissions of the industrial plant to be analyzed. The computer runs should be scheduled under daily basis (faster computer platforms can try several runs every day) with an horizon of 48-72 hours or more (depending on the computer capabilities). The process of switching on and off the industrial emission should reproduce the approved protocol in case of exceedances – according to EU limits - in the air quality concentrations predicted by the daily simulations. The impacts are calculated at the end of the runs by showing maps, statistics, time series, etc. of the absolute values and differences and percentages between different scenarios (ON and OFF). The TEAP system is a prototype developed during the TEAP Eureka Project and operational versions are applied in two different industrial complexes located in the surrounding areas of Madrid: ACECA power plant and Portland Valderrivas Cement company. Similar systems can be used and developed for the impact of roads and areas in cities and take actions in advance to avoid pollution concentration exceedances by applying specific emission reduction strategies according to the forecasts produced by a system TEAP-like.

ACKNOWLEDGEMENTS

We would like to thank PSU/NCAR and EPA (US) for the MM5 and CMAQ codes. The Spanish Industrial Funding Agency (CDTI) and the SOCOIN S.A. company.
REFERENCES

