6-30-1980

Seasonal activity pattern of Columbian ground squirrels in the Idaho primitive area

Charles L. Elliott
Brigham Young University

Jerran T. Flinders
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/gbn

Recommended Citation
Available at: https://scholarsarchive.byu.edu/gbn/vol40/iss2/15

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
SEASONAL ACTIVITY PATTERN OF COLUMBIAN GROUND SQUIRRELS
IN THE IDAHO PRIMITIVE AREA

Charles L. Elliott and Jerran T. Flinders

ABSTRACT.—Data were gathered concerning the seasonal activity pattern of a population of Columbian ground squirrels (Spermophilus columbianus) in the Idaho Primitive Area. Adult females were significantly more active in June of all years than were adult males. A relationship between ground squirrel activity and temperature is postulated in which the squirrels alter their activity so as to avoid high temperatures and possible heat stress.

Members of the genus Spermophilus are characterized by a seasonally short period of aboveground activity and a prolonged period of hibernation. During this time of surface activity ground squirrels must establish territories, breed, reproduce, and gain sufficient weight to survive the inactive season. The annual cycle of activity for various species of ground squirrels has been reported (Skryja and Clark 1970, Michener 1974, Loehr and Risser 1977), but these data as they apply to populations of Columbian ground squirrels (Spermophilus columbianus) are limited.

METHODS

The study was conducted at Cold Meadow, an 87 ha meadow (elev. 2010 m) located in the northeastern portion of the Big Creek Ranger District, Idaho Primitive Area. A description of the Big Creek area has appeared elsewhere (Wing 1969, Hornocker 1970, Seidensticker et al. 1973). Ground squirrels were trapped from 12-19 June, 17-24 July, and 14-21 August, 1976-1978. Field work prior to 12 June was impractical because of bad weather and the inaccessibility of the study area. A 90 x 90 m grid with 36 trapping stations 15 m apart was established on the central portion of the meadow. One live trap (15 x 15 x 48 cm) was placed at each trapping station. Traps were baited with carrot and checked every hour. Captured squirrels were marked using the toe clipping system of Melchior and Iwen (1965), sexed, measured, weighed, time-of-capture recorded, and released back onto the grid. Vegetation was collected using the procedure outlined by Tadmor et al. (1975). All plant samples were weighed to the nearest gram in the field and then brought back to the laboratory, where they were oven dried at 64 C for three days. The dried specimens were then weighed to the nearest gram and percent moisture content calculated. Daily ambient temperatures were obtained using a Taylor Maximum-Minimum thermometer.

Ground squirrel activity in this study was equated with the animals presence in the traps. Bias due to ‘trap-shy’ or ‘trap-happy’ squirrels may have occurred, but attempts to conduct hourly visual censuses proved unreliable during the latter months due to the increase in vegetation height.

RESULTS AND DISCUSSION

The number of Columbian ground squirrels captured, including recaptures, is depicted in Table 1. Adult female squirrels were significantly more active in June of each year than were adult males (Kolmogorov-Smirnov Two Sample Test, P <0.05). Activity for July and August was not significantly different between sexes of adult or young squirrels.

Males are territorial during the breeding season (Steiner 1970a), exhibiting extreme aggression toward other males and occasionally raiding the nesting ground and colonies of adjacent males (Steiner 1970a, 1970b, 1971,

1 Department of Botany and Range Science, Brigham Young University, Provo, Utah 84602.
1972). This aggressive behavior and Lambeth's (1977) findings that Columbian ground squirrels utilize a core area or arena of activity between 21 and 40 m in size may account for the greater number of females captured in June. Dominant males would have been excluding other male squirrels from the trapping grid.

The hibernation entry sequence described by Manville (1959) and Michener (1974) for *S. columbianus* was not apparent for the Cold Meadows colony. This disparity may be artificial because adult ground squirrels during August become very lethargic and inactive and were extremely difficult to trap.

Shaw (1925) has suggested that early spring activities of Columbian ground squirrels are largely controlled by temperature alone, whereas estivation is induced by the drying of the vegetation. Howell (1938) felt that "the date of beginning estivation was determined chiefly by the ripening of the vegetation and consequent reduction of the moisture content in their (ground squirrels) food, and in part also by the accumulation of fat in the body." Nansel and Knoche (1972) also observed Columbian ground squirrels and postulated that hibernation was a response to drought prior to a decrease in temperature. Cold Meadows plant moisture content declined as the season progressed (Table 2), as did the squirrels' aboveground activity (Table 1).

Peak daily activity of ground squirrels at Cold Meadows appears to be determined by temperature. Table 3 shows the monthly time interval exhibiting the greatest percentage of activity for the month of the year. The mean maximum temperature for June 1976 (Table 4) was significantly greater than June 1977 and June 1978. The maximum percent of activity for June 1976 occurs later in the day than for June 1977 or June 1978. This same type of activity shift in relation to significantly greater maximum temperatures is evident for July; July 1978 is significantly greater

Table 1. Live trapping results by age and sex for Columbian ground squirrels at Cold Meadows, Idaho Primitive Area, 1976-1978.

<table>
<thead>
<tr>
<th></th>
<th>June</th>
<th>July</th>
<th>August</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>1976</td>
<td>12</td>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>1977</td>
<td>15</td>
<td>39</td>
<td>7</td>
</tr>
<tr>
<td>1978</td>
<td>24</td>
<td>32</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 2. Mean percent moisture content (± standard deviation) of plant species exhibiting the highest frequency of occurrence at Cold Meadows, Idaho Primitive Area, 1976-1978.

<table>
<thead>
<tr>
<th>Species</th>
<th>1976</th>
<th>1977</th>
<th>1978</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>July</td>
<td>August</td>
<td>June</td>
</tr>
<tr>
<td>Achillea millefolium</td>
<td>66 ± 1</td>
<td>72 ± 4</td>
<td>72 ± 1</td>
</tr>
<tr>
<td>Carex aquatilis</td>
<td>65 ± 5</td>
<td>63 ± 6</td>
<td>61 ± 7</td>
</tr>
<tr>
<td>Frangula virginiana</td>
<td>67 ± 8</td>
<td>66 ± 2</td>
<td>65 ± 8</td>
</tr>
<tr>
<td>Penstemon procerus</td>
<td>68 ± 6</td>
<td>65 ± 2</td>
<td>72 ± 3</td>
</tr>
<tr>
<td>Phleum alpinum</td>
<td>63 ± 5</td>
<td>57 ± 7</td>
<td>57 ± 1</td>
</tr>
</tbody>
</table>

1: n = 10 samples/species/month.

Table 3. Peak activity time intervals for adult Columbian ground squirrels at Cold Meadows, Idaho Primitive Area, 1976-1978.

<table>
<thead>
<tr>
<th></th>
<th>1976</th>
<th>1977</th>
<th>1978</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 12-19</td>
<td>1700-1800 hours</td>
<td>1400-1500</td>
<td>1400-1500</td>
</tr>
<tr>
<td>July 17-24</td>
<td>1300-1400</td>
<td>1200-1300</td>
<td>1000-1100</td>
</tr>
<tr>
<td>August 14-21</td>
<td>1600-1700</td>
<td>1200-1300</td>
<td>1300-1400</td>
</tr>
</tbody>
</table>
than July 1976 and July 1977. August 1977 mean daily maximum temperature is significantly greater than August 1976 and August 1978; yet the expected shift in peak activity does not occur. This may be due to the small activity sample size for August 1977.

The relationship of temperature to activity indicates that the higher the average daily maximum temperature, the earlier or later in the day peak activity will occur. If this hypothesis is valid, then, for those sampling periods where the average maximum temperatures were not significantly different, the time interval of peak activity should be similar. This relationship is observed for June 1977 and June 1978, and July 1976 and July 1977 (Table 3).

Bets (1976) observed a lower elevation (1360 m) colony of S. columbianus in western Montana and reported that, with the increase in temperatures during lactation and post-lactation periods, there was an increase in morning and late afternoon activity and a decrease in midday activity. Bets postulated that temperature or solar radiation may limit the amount of consecutive time Columbian ground squirrels can spend aboveground.

The observations of Bets (1976) and data reported here indicate that the scheduling of surface activity for these squirrels is an apparent behavioral response designed to escape heat stress.

We thank the University of Idaho for permission to use the facilities at the Taylor Ranch Field Station, Idaho Primitive Area.

Literature Cited

