2000-08-01

Practicality of Large Mylar Bags to Store Corn and Beans in Kenya

BYU Food Quality Assurance Laboratory

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Food Science Commons, and the Nutrition Commons

Original Publication Citation
BYU Food Quality Assurance Laboratory

BYU ScholarsArchive Citation
BYU Food Quality Assurance Laboratory, "Practicality of Large Mylar Bags to Store Corn and Beans in Kenya" (2000). All Faculty Publications. 1315.
https://scholarsarchive.byu.edu/facpub/1315

This Report is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Practicality of Large Mylar Bags to Store Corn and Beans in Kenya
May-August 2000

Introduction
The purpose of this study is to determine the practicality of using extra large zip-lock mylar bags with oxygen absorber packets to store corn and beans in Chyulu, Kenya. Weevil usually gets in the food after about 5 months, so if the oxygen can be maintained at a low level, the corn and beans could be stored for longer than that. The goal is to be able to store the food for 18 months.

In order to determine the practicality of using the mylar bags to store corn and beans, the following questions will need to be answered:

- Are the bags strong enough and thick enough to provide a good oxygen barrier?
- Does the corn or beans cause the foil lining and other parts of the laminate to fail?
- Will this material be a sufficient barrier to insects (ie. cockroaches, saw-toothed grain beetles)? We already know they are not rodent proof.

NOTE: An alternative method for storing the corn and beans is to use a rigid steel container with CO\textsubscript{2} or another fumigant, but that is an entirely different project.

Methods
1. Four mylar bags were filled with either beans or wheat—2 bags had zip-lock closures and 2 required heat sealing.
2. Ten Ageless oxygen absorber packets (1 packet is used in a No. 10 can, and the amount of product filling the bags was ten times the amount used in a No. 10 can) were placed in each and the bags were closed and stored at ambient conditions.
3. A needle was inserted into the top part of the bag and sealed around the insertion point with silicone cement.

Measurements of oxygen headspace were taken every day until the oxygen level inside the bag began to increase toward atmospheric level. All measurements were made using the Illinois Instruments 3500 Headspace Oxygen Analyzer calibrated to ambient air (20.9% oxygen) and a syringe fitted with a gas-tight valve. See pictures below:
Zip-Lock Mylar Bag

Heat Sealed Mylar Bags

Needle With Gas-Tight Valve; Silicone Cement

Needle Inserted into Bag and Sealed with Silicone Cement

Hole in Bag Caused by Folding

View of Hole Looking Inside Bag

View of Hole in Dark Room with Light Behind

Pinholes in Mylar
More Pinholes in Mylar

Very Tiny Pinholes in Mylar (barely visible)

Oxygen Analyzer

Obtaining Sample

Measuring Oxygen Level

Close-up of Sample Injection
Results

Conclusions

The zip-lock mylar bags could not keep the oxygen levels low enough to prevent insect infestation. This is most likely due to pinholes in the aluminum barrier as well as imperfections in the packaging around the seal, which allowed oxygen to enter the bag. Defects in the aluminum barrier were present at the beginning of the experiment, and more tiny holes were produced from the stress of the beans and wheat on the packaging.

The heat sealed mylar bags kept the O₂ level below 0.2% for at least 9 weeks, so they appear to be highly impermeable to oxygen. Prediction of oxygen level after 18 months of storage is not possible, but from the results of this study, these bags may work to store corn and beans in Kenya.
The oxygen level rose up to 5% in the 1st heat sealed bag over a period of 6 months. This increase in oxygen level could be due to imperfections in the seal around the gas tight syringe. The gas-tight valve used in this bag was needed for another study, so this study was ended.

The oxygen level inside the 2nd heat-sealed bag remains quite low (around 0.07%) after 6 1/2 months. Measurements will continue.