Strategies for Preventing Disruptive Behaviors Among Students with Autism

Tina Taylor Dyches
tina_dyches@byu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Counseling Psychology Commons, and the Special Education and Teaching Commons

Original Publication Citation

BYU ScholarsArchive Citation
Dyches, Tina Taylor, "Strategies for Preventing Disruptive Behaviors Among Students with Autism" (2000). All Faculty Publications. 1114.
https://scholarsarchive.byu.edu/facpub/1114

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Help! What should I do with Michael? I can’t control him!” I often hear pleas of help similar to this one. What can a teacher do to help a student with autism learn and demonstrate appropriate behavior? The purpose of this article is to provide a framework by which we can view behavior, and a description of a few strategies to help prevent challenging behaviors among students with autism.

Conceptual Framework

When I was a fresh out of college working under a provisional certificate, I was educated in the “current” methods of “behavior management.” That is, I learned how to observe, count, graph and watch the trends of “maladaptive” behaviors of my students. Even if a student did not have challenging behaviors, I was able to point out even mildly disruptive behaviors. I became the “data queen” of my school. With these data I then planned elaborate behavior management strategies that I could use “on” my students. Typically, the occurrences of maladaptive behaviors decreased and I felt good about how I had changed my students’ lives.

Well, time passed. My students grew up and transferred to other teachers and other schools. I also moved on and even left the state for several years. When I returned to Utah and began visiting student teachers along the Wasatch Front, I saw one of my former preschoolers. He had been one of my most challenging students. Our multidisciplinary team had developed a precise, strict behavior management plan to follow whenever he engaged in various behaviors, including sucking his middle two fingers. Well, when I walked into a local school and saw this junior high school student, I was caught off-guard. This was my preschooler, all grown up! And guess what? He was still sucking his middle two fingers! How could that be after all of his data charts indicated that we had practically eliminated that behavior? Had we really not changed his life after all?

At that moment, I came to the clear realization that professionals alone can’t control or change a student’s behavior. Instead, we must help the student learn to control his or her own behavior. We can’t expect to run a behavior management plan “on” a student without that student having some ownership of such a plan. And we can’t expect planned and enforced consequences alone to have long term effects on a given behavior.

Fortunately, the field of behavior management emerged from its rudimentary past to the current conceptual framework of “positive behavioral support.” This relatively new way of viewing behavior recognizes that behavior communicates. For example, when a student sucks his fingers he may be communicating, intentionally or not, that he is filling an internal need. We as teachers need to recognize our students’ needs and try to help them fill these needs in a socially acceptable fashion.

Along with the maturation of the field of behavior analysis came the rapid expansion of knowledge of the neurobiological factors associated with autism. It is now accepted that autistic individuals have chemical and structural abnormalities in the brain. Two of the implicated neural structures are the cerebellum and hippocampus. Before I understood the effects of the brain abnormalities on my students’ behaviors, I ignorantly insisted that these students were merely being “non-compliant.” Knowing the purpose of these structures has helped me to plan strategies to prevent challenging behaviors among students with autism.

Strategies to Prevent Challenging Behaviors

As a part of my current work, I have the unique opportunity to interact with many competent and dedicated teachers across the state of Utah. I would like to share a few of the strategies they have used, which correlate with current brain research, to prevent challenging behaviors from occurring in their settings.

Prediction Strategies. One of the functions of the cerebellum is to predict events. Individuals with autism often have difficulties adjusting to events that are unpredictable. To help prevent some challenging behaviors, a daily schedule can be used. I have seen many teachers use various types of schedules including: written, black and white drawings, photographs, and even object schedules. They also vary according to use: whole class schedules and personal daily or weekly schedules, and can be as formal as a day planner.
Some teachers ask, “But doesn’t the use of schedules make these students even more rigid? What happens when we have an unexpected fire drill? Will my student freak out because it is not on his daily schedule?” One teacher’s strategy to combat this perceived inflexibility is to use a “surprise activity.” This teacher actually teaches her students to expect surprises by occasionally putting a “surprise” item on her daily class schedule, represented by a question mark. She does this at a time that is no surprise to her, so she can support the students’ responses. When first taught, this surprise activity should be a very positive activity, such as a pizza party or free time with new toys. These positive surprise activities are used to help the students not to fear change. Gradually, more neutral activities replace the fun surprise activity, and eventually the dreaded event (e.g., fire drill, school assemblies) can become the surprise activity.

Augmentative and Alternative Communication. The hippocampus functions to take in, process, store, retrieve, and send information. I have heard teachers comment that their students with autism “know” more than they can “show.” This is likely a function of the abnormalities of the hippocampus.

One of the most exciting developments in the past decade is the increased use of Augmentative and Alternative Communication (AAC) devices among individuals with autism. AAC facilitates the input, retrieval, and storage of information. Particularly for non-verbal students, the benefits of AAC are astounding. Let me share just one example.

Recently I visited a teacher that worked with a student who was functionally non-verbal, and doing very little work in the classroom. On any given day he would engage in an average of approximately 25-30 maladaptive and destructive behaviors (I saw his charts!). Rather than punishing the student for his misbehavior, the multidisciplinary team decided to teach the student to use a communication book (based upon the Picture Exchange Communication System). The results have been dramatic. He now makes several requests using PECS, participates enthusiastically in class activities, and seems to be happy at school. Moreover, he rarely engages in severely destructive behavior (again, I saw the deceleration trends on his charts!). He now has an efficient and appropriate way of communicating!

This is a prime example of modern behaviorism. We learn to assess the student by understanding the individual, not merely observing his behavior. When we have assessed the needs correctly, we can implement a system that includes visual and communication supports to empower students in increasing their repertoires of adaptive behaviors. When we use preventative strategies to teach students acceptable behaviors, we create an environment that is proactive and positive, not reactive and negative. In such environments we are more likely to make a lasting impact on our students’ lives.