12-31-1973

Artemisia arbuscula, A. longiloba, and A. nova habitat types in northern Nevada

B. Zamora
Renewable Resources Center, University of Nevada, Reno

P. T. Tueller
Renewable Resources Center, University of Nevada, Reno

Follow this and additional works at: https://scholarsarchive.byu.edu/gbn

Recommended Citation
Available at: https://scholarsarchive.byu.edu/gbn/vol33/iss4/4

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
ARTEMISIA ARBUSCULA, A. LONGILOBA, AND A. NOVA HABITAT TYPES IN NORTHERN NEVADA

B. Zamora1,2 and P. T. Tueller1

Abstract.—Artemisia arbuscula, A. longiloba, and A. nova are dwarf sagebrush species that occur extensively throughout the shrub steppe of northern Nevada. These species are similar ecologically in that they occupy habitats strongly influenced by edaphic factors. Nine major habitat types on which these shrubs are dominant are recognized in this region. The A. arbuscula habitat types are most prevalent in extreme northern Nevada. Southward, they generally become restricted to altitudes above the Pinus-Juniperus woodland zone. A single A. longiloba habitat type is described, occurring in northeastern Nevada. The A. nova habitat types are most prevalent in north central and east central Nevada. Four features appear consistently among soils of these habitat types: (1) shallowness, (2) high profile gravel volume, (3) presence of a clay B horizon close to the soil surface, and (4) presence of large quantities of mineral carbonates throughout profiles of most A. nova habitat types.

Artemisia arbuscula, A. longiloba, and A. nova are dwarf sagebrush species which dominate approximately one-half of the sagebrush vegetation in Nevada (Beetle, 1960). The most extensive communities of these species in Nevada occur in the northern portions of the state and form very distinct and important components of the shrub steppe of this region. Excessive livestock grazing in past years has greatly altered the herbaceous composition of the vegetation of many of these communities. Virtually no synecological studies of undisturbed A. arbuscula, A. longiloba, and A. nova vegetation have been undertaken in Nevada (Passey and Hugie, 1962). Such information would be useful in ascertaining the biotic potential and limitations of the habitats occupied by these shrubs and would greatly aid in the management and manipulation of these communities for grazing and watershed purposes. The purpose of this study was to delimit the characteristics of the major A. arbuscula, A. longiloba, and A. nova habitat types in the shrub steppe of northern Nevada.

Study Area

The study encompassed areas throughout northern Nevada where these species of sagebrush were abundant and where undisturbed vegetation would likely be found. The region referred to as northern Nevada is that portion of the state generally north of the 39th parallel. The physiography of much of this region consists of numerous, short mountain ranges and intermontane basins with internal drainage. Extreme northern Nevada consists of an upwarped plateau of hilly and mountainous terrain with major drainage into the Snake River to the north in Oregon and Idaho. Soils of this region belong predominantly to the Aridisol, Entisol, Mollisol, and Vertisol orders. The climate is arid. The mean annual temperature is 8.9 C, with the coldest temperatures occurring in December through February.

1Renewable Resources Center, University of Nevada, Reno 89507.
2Present address: Agricultural Research Service, U.S. Department of Agriculture, Department of Agronomy and Soils, Washington State University, Pullman 99163.
(mean = 2.2 °C) and the warmest in July and August (mean = 20.8 °C). The mean total annual precipitation is 239.2 mm. The long-range normals (in mm) for total monthly precipitation are as follows: January 29.2, February 26.4, March 23.9, April 22.9, May 24.6, June 18.0, July 9.9, August 7.6, September 9.9, October 18.8, November 20.6, December 27.4.

The shrub steppe in extreme northern Nevada appears as a uniform, continuous shrub cover occasionally interrupted by *Juniperus* or *Cercocarpus* woodlands. In north central Nevada, shrub steppe communities occupy basins and lower pediment slopes of the mountain ranges. At higher altitudes, the shrub steppe is interrupted by a zone of *Pinus monophylla* and *Juniperus osteosperma* woodlands (Billings, 1951). Above this zone, shrub communities again appear, particularly those dominated by *Artemisia*.

Methods

A preliminary reconnaissance of the vegetation dominated by *Artemisia arbuscula*, *A. longiloba*, and *A. nova* gave an indication of the community types, distribution, and pattern of occurrence. Lists of the dominant species within each stand were taken during the reconnaissance. These species were then ranked according to their abundance. Nine community types were subjectively delineated by examination of these lists in stand tables. Based on this initial classification, 39 stands representing the various community types were selected for detailed study on the basis of the following criteria: absence of disturbance due to grazing, erosion, and wildfire; absence of a tree overstory; presence of a uniform shrub and grass cover.

Vegetation data were collected from a 15-by-30-m macroplot located within each of the 39 stands. Ten 15-m transects were randomly located perpendicular to the long axis of the macroplot. Frequency data for plant species were collected from 10 3-by-6-dm observation plots placed at 1-m intervals along each transect. Only species rooted within each observation plot were tallied. The same observation plots were used to sample basal area of each species along 4 of the 10 transects. Species not recorded in the observation plots but present within the macroplot were listed. Shrub measurements were collected from 1-by-1-m plots placed contiguous and parallel to the same 4 transects from which basal area data were collected. Crown cover, density, and maximum heights were recorded for each shrub species within each meter-square plot.

Physiographic features recorded at each location were: percentage slope, slope aspect, position of the stand on the slope, elevation, landform on which the stand occurred, and terrain of the general area in which the stand occurred. A profile description of the soil underlying each stand was made and identified to the family level (Soil Survey Staff, 1967). One soil sample from each horizon of each profile was collected for laboratory analysis. Soil reaction was measured on a saturated paste with a glass electrode pH meter. Electrical conductivity of an extract from a saturated paste was determined only on
the A1 and B2 horizons of each profile. Calcium carbonate equivalents were determined by gravimetric loss of carbon dioxide upon treatment with 3NHC1 for all horizons.

The vegetation data from the 39 stands were summarized in stand tables and mean values for the various characteristics calculated. The vegetation and associated environmental characteristics were interpreted according to the association and habitat type synecological concepts (Daubenmire, 1968). Stands similar in both shrub and herb dominance were considered representative of an association. A habitat type is a unit of land that now supports or is still capable of supporting one plant association. The name of each habitat type consists of the name of the principal shrub and herb of the association which occupies it. Species nomenclature follows that of Ward (1953) and Beetle (1960) for Artemisia and Holmgren and Reveal (1966) for other vascular plants.

Description of Habitat Types

Artemisia arbuscula is most abundant throughout extreme northern Nevada. Southward into central Nevada, *A. arbuscula* is found predominantly at higher altitudes above the *Pinus monophylla-Juniperus osteosperma* woodland zone. *A. longiloba* occurs almost entirely within a small area in north central Elko County in northeastern Nevada. Occasional small, insular stands may be found in surrounding counties. *A. nova* is most abundant in the north central and eastern portions of the state. Scattered, insular stands may be found throughout northern and southern Nevada.

The physiognomy of the vegetation is quite similar throughout the entire range of these species in Nevada. The shrubs appear as a low, uniformly distributed population interspersed by perennial, caespitose grasses. Separate shrub and grass layers are not always distinguishable because of the similarity in height of most shrubs and grasses. In most areas, individual stands of these dwarf sagebrush species are contiguous to extensive communities of *A. tridentata*, the predominant sagebrush species in Nevada. Ecotones between contiguous stands often appear abrupt. The low, compact growth form of *A. arbuscula*, *A. longiloba*, and *A. nova* contrast sharply with the taller, robust, and diffusely branched growth form of *A. tridentata*.

Nine major habitat types were recognized on the basis of shrub and grass dominance in this region. The 39 stands studied in detail represent the vegetation of 8 of the habitat types. An additional habitat type is described on the basis of reconnaissance data only. Constancy, basal area, and frequency of major plant species in each association are given in Tables 1 and 3. Shrub characteristics are shown in Tables 2 and 4.

(1) *Artemisia arbuscula-Festuca idahocensis* habitat type

This habitat type is found on slopes and ridgetops of hilly and mountainous terrain throughout much of northern Nevada at alti-
Table 1. Mean values for vegetation characteristics of the *Artemisia arbuscula* and *A. longiloba* associations.

<table>
<thead>
<tr>
<th>Species</th>
<th>A. arbuscula−Festuca idahoensis n=5<sup>b</sup></th>
<th>A. longiloba−Festuca idahoensis n=2</th>
<th>A. arbuscula−Stipa thurberiana n=4</th>
<th>A. arbuscula−Agropyron spicatum n=9</th>
<th>A. arbuscula−Purshia tridentata−Agropyron spicatum n=3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CN</td>
<td>FR</td>
<td>CV</td>
<td>CN</td>
<td>FR</td>
</tr>
<tr>
<td>SHRUBS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artemisia arbuscula</td>
<td>100</td>
<td>55</td>
<td>0.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Artemisia longiloba</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>58</td>
</tr>
<tr>
<td>Chrysothamnus viscidiflorus</td>
<td>100</td>
<td>11</td>
<td>0.1</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Eriogonum heracleoides</td>
<td>60</td>
<td>9</td>
<td>T</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>Eriogonum microthecum</td>
<td>60</td>
<td>3</td>
<td>T</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Leptodactylon pungens</td>
<td>40</td>
<td>1</td>
<td>T</td>
<td>50</td>
<td>11</td>
</tr>
<tr>
<td>Tetradymia canescens</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Symphoricarpos longiflorus</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Artemisia tridentata</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Purshia tridentata</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>GRASSES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Festuca idahoensis</td>
<td>100</td>
<td>68</td>
<td>2.1</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>Poa sandbergii</td>
<td>100</td>
<td>76</td>
<td>1.2</td>
<td>100</td>
<td>74</td>
</tr>
<tr>
<td>Agropyron spicatum</td>
<td>100</td>
<td>33</td>
<td>0.4</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>Sitanion hystric</td>
<td>100</td>
<td>11</td>
<td>T</td>
<td>100</td>
<td>27</td>
</tr>
<tr>
<td>Koeleria cristata</td>
<td>40</td>
<td>2</td>
<td>T</td>
<td>75</td>
<td>4</td>
</tr>
<tr>
<td>Stipa thurberiana</td>
<td>40</td>
<td>4</td>
<td>T</td>
<td>100</td>
<td>59</td>
</tr>
<tr>
<td>Bromus tectorum</td>
<td>20</td>
<td>T</td>
<td>—</td>
<td>75</td>
<td>14</td>
</tr>
<tr>
<td>Poa nevadensis</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Stipa lettermani</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>FORBS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collinsia parviflora</td>
<td>100</td>
<td>61</td>
<td>T</td>
<td>100</td>
<td>11</td>
</tr>
<tr>
<td>Antennaria dimorpha</td>
<td>100</td>
<td>3</td>
<td>T</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Eriogonum bloomeri</td>
<td>100</td>
<td>4</td>
<td>T</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Agoseris glauca</td>
<td>80</td>
<td>26</td>
<td>T</td>
<td>100</td>
<td>29</td>
</tr>
<tr>
<td>Crepis accuminata</td>
<td>80</td>
<td>7</td>
<td>T</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Balsamorhiza sagittata</td>
<td>80</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>Species</td>
<td>CN</td>
<td>FR</td>
<td>T</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Allium acuminatum</td>
<td>80</td>
<td>19</td>
<td>50</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Phlox longifolia</td>
<td>80</td>
<td>35</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Arabis holboelli</td>
<td>80</td>
<td>9</td>
<td>50</td>
<td>11</td>
<td>75</td>
</tr>
<tr>
<td>Astragalus purshii</td>
<td>80</td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Senecio integrerrimus</td>
<td>60</td>
<td>20</td>
<td>100</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>Polygonum sanguariaeforme</td>
<td>60</td>
<td>11</td>
<td>100</td>
<td>46</td>
<td>T</td>
</tr>
<tr>
<td>Chaenactis douglasi</td>
<td>60</td>
<td>1</td>
<td>T</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Gayophyllum ramosissimum</td>
<td>60</td>
<td>18</td>
<td>T</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Mertensia oblongifolia</td>
<td>60</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Microsteris gracilis</td>
<td>60</td>
<td>23</td>
<td>T</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Trifolium gymnocarpon</td>
<td>40</td>
<td>T</td>
<td>100</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Cryptantha sp.</td>
<td>40</td>
<td>10</td>
<td>100</td>
<td>14</td>
<td>T</td>
</tr>
<tr>
<td>Aster scopolorum</td>
<td>40</td>
<td>10</td>
<td>100</td>
<td>14</td>
<td>T</td>
</tr>
<tr>
<td>Astragalus missel</td>
<td>40</td>
<td>4</td>
<td>T</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cordylanthus ramosus</td>
<td>40</td>
<td>4</td>
<td>T</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Delphinium andersoni</td>
<td>40</td>
<td>4</td>
<td>T</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Halopappus carthamoides</td>
<td>40</td>
<td>7</td>
<td>T</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>Lomatium dissectum</td>
<td>40</td>
<td>11</td>
<td>T</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phlox hoodii</td>
<td>40</td>
<td>5</td>
<td>0.1</td>
<td>T</td>
<td>100</td>
</tr>
<tr>
<td>Descurainia pinnata</td>
<td>20</td>
<td>11</td>
<td>50</td>
<td>2</td>
<td>T</td>
</tr>
<tr>
<td>Eriastrum sparsiflorum</td>
<td>20</td>
<td>11</td>
<td>T</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>Eriogonum ovalifolium</td>
<td>20</td>
<td>1</td>
<td>T</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Castilleja chromosa</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>8</td>
<td>T</td>
</tr>
<tr>
<td>Calochortus nuttalii</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>8</td>
<td>T</td>
</tr>
<tr>
<td>Chenopodium leptophyllum</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>8</td>
<td>T</td>
</tr>
<tr>
<td>Crepis modocensis</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>8</td>
<td>T</td>
</tr>
<tr>
<td>Halopappus acaulis</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>8</td>
<td>T</td>
</tr>
<tr>
<td>Penstemon watsonii</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>8</td>
<td>T</td>
</tr>
<tr>
<td>Senecio millefoliatus</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>8</td>
<td>T</td>
</tr>
<tr>
<td>Erigeron erecti</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>8</td>
<td>T</td>
</tr>
</tbody>
</table>

*Only species which attain a constancy of 60 percent or greater in one association are shown; CN = constancy (percentage of occurrence of a species in stands of a given association); FR = percentage of 100 3-by-5 dm plots in which a given species occurs; CV = basal area (percentage basal coverage within a 3-by-6 dm plot); T = trace (frequency less than 1 percent; basal area less than 0.1 percent).
Table 2. Mean values for shrub characteristics* of the *Artemisia arbuscula* and *A. longiloba* associations.

<table>
<thead>
<tr>
<th>Species</th>
<th>A. arbuscula—Festuca idahoensis</th>
<th>A. longiloba—Festuca idahoensis</th>
<th>A. arbuscula—Stipa thurberiana</th>
<th>A. arbuscula—Agropyron spicatum</th>
<th>A. arbuscula—Purshia tridentata—Agropyron spicatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artemisia arbuscula</td>
<td>219</td>
<td>18</td>
<td>12</td>
<td>126</td>
<td>19</td>
</tr>
<tr>
<td>Artemisia longiloba</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Chrysothamnus viscidiflorus</td>
<td></td>
<td></td>
<td>28</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>Eriogonum microthecum</td>
<td>5</td>
<td>11</td>
<td>T</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Artemisia tridentata</td>
<td>T</td>
<td>46</td>
<td>T</td>
<td>T</td>
<td>60</td>
</tr>
<tr>
<td>Leptodactylon pungens</td>
<td>2</td>
<td>20</td>
<td>T</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Tetradytma canescens</td>
<td>3</td>
<td>27</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eriogonum heracleoides</td>
<td>16</td>
<td>12</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purshia tridentata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symphoricarpos longiflorus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*No = density (number of plants per 60 m²); Ht = maximum height in cm; Cv = crown cover of a m² plot; T = trace (crown cover value less than 1 percent; density less than 1 plant per 60 m²).
Table 3. Mean values for vegetation characteristics\(^2\) of three *Artemisia nova* associations.

<table>
<thead>
<tr>
<th>Species</th>
<th>A. nova–Agropyron spicatum (n=6^b)</th>
<th>A. nova–Agropyron inerme (n=5)</th>
<th>A. nova–Stipa comata (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cn</td>
<td>Fr</td>
<td>Cv</td>
</tr>
<tr>
<td>TREES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juniperus osteosperma</td>
<td>66</td>
<td>T</td>
<td>—</td>
</tr>
<tr>
<td>Pinus monophylla</td>
<td>33</td>
<td>T</td>
<td>—</td>
</tr>
<tr>
<td>SHRUBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artemisia nova</td>
<td>100</td>
<td>56</td>
<td>1.2</td>
</tr>
<tr>
<td>Chrysothamnus viscidiflorus</td>
<td>83</td>
<td>8</td>
<td>T</td>
</tr>
<tr>
<td>Eurotia lanata</td>
<td>17</td>
<td>2</td>
<td>T</td>
</tr>
<tr>
<td>Ephedra viridis</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>GRASSES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agropyron spicatum</td>
<td>100</td>
<td>79</td>
<td>1.4</td>
</tr>
<tr>
<td>Poa sandbergii</td>
<td>100</td>
<td>37</td>
<td>0.3</td>
</tr>
<tr>
<td>Sitanion hystric</td>
<td>17</td>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td>Agropyron inerme</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Stipa comata</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>FORBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calochortus nuttallii</td>
<td>100</td>
<td>6</td>
<td>T</td>
</tr>
<tr>
<td>Phlox longifolia</td>
<td>100</td>
<td>36</td>
<td>T</td>
</tr>
<tr>
<td>Arabis holboellii</td>
<td>83</td>
<td>8</td>
<td>T</td>
</tr>
<tr>
<td>Haplopappus acaulis</td>
<td>83</td>
<td>17</td>
<td>0.4</td>
</tr>
<tr>
<td>Astragalus purshii</td>
<td>67</td>
<td>3</td>
<td>T</td>
</tr>
<tr>
<td>Cryptantha humilis</td>
<td>67</td>
<td>12</td>
<td>T</td>
</tr>
</tbody>
</table>
Table 3 (Continued).

<table>
<thead>
<tr>
<th>Species</th>
<th>Kc</th>
<th>T</th>
<th>T</th>
<th>T</th>
<th>n</th>
<th>Fr</th>
<th>Cy</th>
<th>T</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptanthus cordatus</td>
<td>67</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td>20</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Agoseris glauca</td>
<td>50</td>
<td>3</td>
<td>T</td>
<td>60</td>
<td></td>
<td>4</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astragalus beckwithii</td>
<td>50</td>
<td>T</td>
<td>T</td>
<td>80</td>
<td></td>
<td>4</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delphinium andersoni</td>
<td>33</td>
<td>2</td>
<td>T</td>
<td>60</td>
<td></td>
<td>2</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eriogonum ovalifolium</td>
<td>33</td>
<td>1</td>
<td>T</td>
<td>40</td>
<td></td>
<td>6</td>
<td>T</td>
<td>60</td>
<td>T</td>
</tr>
<tr>
<td>Gilia clokeyi</td>
<td>33</td>
<td>23</td>
<td>T</td>
<td>40</td>
<td>6</td>
<td>100</td>
<td>T</td>
<td>9</td>
<td>T</td>
</tr>
<tr>
<td>Lomatium macdougali</td>
<td>33</td>
<td>T</td>
<td>T</td>
<td>100</td>
<td>11</td>
<td></td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptantha spp.</td>
<td>17</td>
<td>T</td>
<td>T</td>
<td>60</td>
<td>1</td>
<td></td>
<td>T</td>
<td>60</td>
<td>T</td>
</tr>
<tr>
<td>Linum lewisii</td>
<td>17</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
<td>60</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Erigeron pumilis</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>100</td>
<td>1</td>
<td></td>
<td>T</td>
<td>80</td>
<td>T</td>
</tr>
<tr>
<td>Descurainia pinnata</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>60</td>
<td>3</td>
<td></td>
<td>T</td>
<td>60</td>
<td>T</td>
</tr>
</tbody>
</table>

aOnly species which attain a constancy of 60 percent or greater in one association are shown;
Cn = constancy (percentage of occurrence of a species in stands of a given association);
Fr = percentage of 100 3-by-6-dm plots in which a given species occurs;
Cy = basal area (percentage basal coverage within a 3-by-6-dm plot);
T = trace (frequency less than 1 percent; basal area less than 0.1 percent)
bn = number of stands studied in detail.
tudes ranging from 1900 to 2000 m. *Artemisia arbuscula* is the domi-
nant shrub of the association. *Festuca idahoensis* is the dominant
perennial herb, with *Poa sandbergii* and *Agropyron spicatum* the
principal subdominants. Low scattered bushes of *Chrysothamnus vis-
cidiflorus* occur in all stands. *Bromus tectorum*, the only annual
grass, occurs in very minute amounts but becomes abundant in most
seral stands. Forbs in all *Artemisia arbuscula* associations are very
low in basal area but often attain relatively high frequencies. Soils
supporting stands studied in detail were divided among the subgroups
Typic Haploxerolls, Typic Argixerolls, Typic Durixerolls, and Xerol-
lic Camborthids. The association is similar to those described by
Eckert (1957), Tueller (1962), Culver (1964), Hall (1967), and
Dealy (1971) in central and eastern Oregon.

(2) *Artemisia longiloba-Festuca idahoensis* habitat type

In north central Elko County in northeastern Nevada, stands of
Artemisia longiloba may be found on slopes of gently rolling to hilly
terrain at altitudes ranging from 1900 to 2100 m. Only two stands
were found that were not extensively altered by grazing. Except for
the substitution of *Artemisia longiloba* for *Artemisia arbuscula*, the
vegetation closely resembles that of the *Artemisia arbuscula-Festuca
idahoensis* association in both floristics and abundance of herbaceous
species. Soils of the two stands belong to the subgroups Xerollic
Camborthids and Mollic Paleargids. Tisdale, Hironaka, and Fosberg
(1965) described a pristine *Artemisia longiloba-Festuca idahoensis-
Stipa thurberiana* community in southern Idaho. The abundance of
S. thurberiana was the only major difference between the community
in Idaho and the two stands in Nevada. Hugie, Passey, and Willi-
ams (1964) described an *Artemisia longiloba* community in the
Snake River Plain, Idaho, in which *F. idahoensis*, *Agropyron spica-
tum*, and *Poa sandbergii* were the principal grasses. Robertson, Niel-
sen, and Bare (1966) report that *Agropyron spicatum* is the pre-
dominant grass associated with *Artemisia longiloba* on range site in Colorado.

(3) *Artemisia arbuscula-Stipa thurberiana* habitat type

The *Artemisia arbuscula-Stipa thurberiana* habitat type occurs on gently rolling to hilly terrain primarily in northwestern Nevada at altitudes varying around 1800 m. Stands are distinguished by the dominance of the perennial grass *Stipa thurberiana*. Subdominant grasses include *Poa sandbergii* and *Sitanion hystrix*. *Festuca idahoensis* is low in constancy. Mat-forming forbs are a conspicuous component of the vegetation, the most prevalent species being *Eriogonum ovalifolium*, *Phlox hoodii*, *Aster scopulorum*, and *Astragalus purshii*. Soils underlying stands studied in detail belong to the subgroups Mollic Paleic Durargids, Mollic Paleargids, Mollic Haplargids, and Typic Durixerolls.

(4) *Artemisia arbuscula-Agropyron spicatum* habitat type

The *Artemisia arbuscula-Agropyron spicatum* habitat type occurs on slopes and ridgetops of hilly and mountainous terrain in northeastern and east central Nevada (Figure 1). Altitudes of stands range from 1900 to 2700 m. The association is characterized by the abundance of *Agropyron spicatum*. *Festuca idahoensis* is usually absent but may occur in minute amounts. In some stands, *Poa sand-
bergii may equal or exceed Agropyron spicatum in both basal area and frequency. Chrysothamnus viscidiflorus is the only other shrub of high constancy. In east central Nevada, this association was found only above the Pinus-Juniperus woodland zone. The growth form of Artemisia arbuscula was greatly altered at these higher altitudes, appearing as an almost prostrate shrub with dense, flattened canopies. Scattered bushes of Artemisia frigida and Artemisia nova may be present in these stands. Soils supporting the stands studied in detail are divided among the subgroups Lithic Argixerolls, Typic Haploxerolls, and Mollic Haplorgids. Eckert (1957), Culver (1964), and Hall (1967) described similar associations in central and eastern Oregon.

(5) Artemisia arbuscula-Purshia tridentata-Agropyron spicatum habitat type

The Artemisia arbuscula-Purshia-Agropyron habitat type was found only on the pediment slopes of Duck Creek Basin in the Schell Creek mountain range northeast of Ely, Nevada (Figure 2). These slopes are dissected, forming many narrow to broadly rounded ridges extending from the mountain range into the basin. Stands occur between 2400 and 2500 m elevation. All soils described belong to the subgroups Typic Argixerolls. Codominance of the shrubs Artemisia arbuscula and Purshia tridentata characterizes the association. Pursh-
Artemisia tridentata has a slightly larger crown cover than Artemisia arbuscula but considerably lower density (Table 2). Scattered individuals of Artemisia tridentata, Symphoricarpos longiflorus, Tetradyenia canescens, and Chrysothamnus viscidiflorus occur throughout the vegetation. Agropyron spicatum is the dominant perennial herb. Stands of this association occur at the lower edges of the Pinus monophylla-Juniperus osteosperma zone within the basin. Dealy (1971) described a Purshia tridentata-Artemisia arbuscula-Stipa thurberiana community in south central Oregon which occurred near the lower edge of the Pinus ponderosa forests.

(6) Artemisia nova–Agropyron spicatum habitat type

The Artemisia nova–Agropyron spicatum habitat type occurs throughout north central Nevada, principally on slopes of gently rolling to hilly terrain at altitudes ranging from 2000 to 2300 m (Figure 3). This habitat type may also occur at higher altitudes on certain mountain ranges where soils are derived from calcareous parent materials. Such areas are found in the Snake, Schell Creek, and Egan ranges of east central Nevada. Artemisia nova is the principal shrub and Agropyron spicatum the principal herb. Poa sandbergii occurs in small amounts in most stands but increases in abundance at higher elevations. Other grasses such as Poa nevadensis.

Fig. 3. Stand representative of the Artemisia nova–Agropyron spicatum association on slopes of the Schell Creek Range in east central Nevada. The meter stake is marked in decimeters.
Bromus tectorum, Oryzopsis hymenoides, Sitanion hystrix, and Stipa thurberiana are present in very limited amounts. Chrysothamnus viscidiflorus is the only other shrub of high constancy. Stands of this association and Artemisia tridentata communities often constite the major vegetation directly below and above the Pinus monophylla-Juniperus osteosperma woodland zone in east central Nevada. Artemisia nova may also occupy openings within the woodlands and form a shrub layer beneath the tree canopies. The soils supporting the stands studied in detail were divided among the subgroups Typic Torriorthents, Pachic Argixerolls, Typic Durixerolls, Pachic Haploxerolls, and Xerollic Paleorthids.

(7) Artemisia nova–Agropyron inerme habitat type

This habitat type occurs on foothill slopes of the Pancake mountain range predominantly in Nye County in central Nevada. It ranges in altitude from 1800 to 2100 m. Agropyron inerme is the dominant herb. The tall, robust, caespitose growth form of this grass is the most conspicuous feature of the physiognomy. Poa sandbergii and Sitanion hystrix are the only other grasses with high constancy among the stands. Stands of the Artemisia nova–Agropyron inerme association are commonly associated with extensive communities of Atriplex confertifolia and Grayia spinosa. Influence of the Atriplex and Grayia vegetation on these stands is evident in the presence of shrubs such as Atriplex confertifolia, Eurotia lanata, Ephedra viridis, and Grayia spinosa, which are characteristic of the Atriplex and Grayia vegetation. The soils described belong to the Aridisol subgroups Mollic Paleargids, Mollic Haplargids, and Lithic Mollic Haplargids.

(8) Artemisia nova–Stipa comata habitat type

The Artemisia nova–Stipa habitat type is found in White Pine County on pediment slopes of hilly terrain. The altitudinal range is 2000 to 2200 m. The association is characterized by the abundance of Stipa comata. Poa sandbergii and Sitanion hystrix are highly constant grasses but are low in frequency and basal area. Bromus tectorum and Hilaria jamesii may be present in very small amounts. A. nova has a high density in comparison to other A. nova associations (Table 2). Scattered individuals of Chrysothamnus viscidiflorus and Eurotia lanata are generally present. Soils underlying these stands belong to the subgroups Typic Torriorthents and Xerollic Paleorthids.

(9) Artemisia nova–Oryzopsis hymenoides habitat type

The Artemisia nova–Oryzopsis habitat type is described only from reconnaissance data. The vegetation of this habitat type has been severely grazed by livestock in the past. Because of the nature of the terrain, the vegetation is easily accessible and conducive to fall and winter grazing by livestock. No stands were found that had
not been affected by grazing to various degrees. However, the species composition of the vegetation is quite constant over large areas even though the herbage is often reduced to very small quantities by livestock.

The habitat type occurs extensively on undulating and gently rolling pediment slopes in the intermontane basins in central and east central Nevada (Figure 4). These slopes are generally less than 5 percent in steepness. Areas of the Artemisia nova-Oryzopsis habitat type generally occur over an altitudinal range of 1800-2300 m. Soils are predominantly of the Aridisol and Entisol orders.

Artemisia nova is the dominant species of the vegetation. Chrysothamnus viscidiflorus and Eurotia lanata are the only shrubs commonly occurring with Artemisia nova. The following additional shrubs may occur and are listed in order of decreasing presence: Ephedra viridis, Atriplex confertifolia, Eriogonum microthecum, Artemisia tridentata, Leptodactylon pungens and Tetradymia canescens. The herb layer is very sparse, composed principally of the caespitose grass O. hymenoides. Other grasses that may be occasionally found are Poa sandbergii, Sitanion hystrix, Stipa comata, and Hilaria jamesii. Forb species are generally scarce throughout the vegetation. The most abundant, in order of decreasing presence, are Phlox hoodii, Eriogonum ovalifolium, Haplopappus acaulis, Caulanthus crassicaulis, Erigeron pumilis, Phlox longifolia, Sphaeralcea

Fig. 4. Stand representative of the Artemisia nova-Oryzopsis hymenoides association in central Nevada.
and *Astragalus calycocus*. Stands of the *Artemisia nova*–*Oryzopsis* association are commonly contiguous with stands of *Atriplex, Eurotia lanata,* and *Grayia spinosa.*

Soils

Considerable variation in morphology was encountered among the soils of the *Artemisia arbuscula, Artemisia longiloba* and *Artemisia nova* habitat types. Of the 39 soils described, 25 different families were identified. This was expected, since many of the soils are distributed over a wide geographical area and occur in a variety of topographic positions. The more prominent features of the collective soils are described.

The sola thickness of soils of the *Artemisia arbuscula* and *Artemisia longiloba* habitat types varied from 23 to 87 cm, with an average of 55 cm. Sixty-five percent of these soils have dense clay horizons (B2t). The upper boundaries of these horizons varied from 7 to 36 cm below the soil surface, with an average of 19 cm. These prominent clay horizons did not form a root-restricting layer, since roots were abundant throughout their depth. Sixty-five percent of the soils have sola with high gravel volumes ranging from 20 to 62 percent. The majority of these soils belong to the *Artemisia arbuscula–Agropyron* and *Artemisia arbuscula–Purshia–Agropyron* habitat types. Those soils lacking dense clay horizons have sola with high gravel volumes. Root-restricting layers (duripans or bedrock) were found in only 21 percent of the soils, occurring at depths of 23-87 cm. The remaining soils were generally underlain by gravelly loam strata. The occurrence of these layers was not restricted to soils of any particular habitat type. Sola of the *Artemisia arbuscula* and *Artemisia longiloba* soils were not calcareous nor alkaline. Soil reaction of the A1 and B2 horizons varied from pH 5.5 to 7.4, with electrical conductivities ranging from 0.1 to 1.0 mmhos per cm.

The sola thickness of soils of the *Artemisia nova* habitat types varied from 7 to 89 cm, with an average of only 26 percent of the *Artemisia nova* soils described having dense clay horizons. The upper boundaries of these horizons ranged from 7 to 15 cm below the soil surface. Eighty-one percent of the *Artemisia nova* soils have high volumes of gravel in their sola, varying from 26 to 52 percent. Root-restricting layers (duripans, petrocalcic horizons, or bedrock) were found in 50 percent of the soils at depths of 29-68 cm and did not occur predominantly in any one habitat type. The remaining soils were generally underlain by gravelly and sandy loam strata. The majority of the soils of the *Artemisia nova* habitat types are calcareous throughout their sola. Percentage CaCO$_3$ equivalents of the A1 and B2 horizons varied from 9 to 36 percent. Soil reaction of these horizons ranged from pH 6.6 to 8.5, with electrical conductivities varying from 0.2 to 0.7 mmhos per cm. However, sola of soils of the *Artemisia nova–Agropyron inerme* habitat type are generally free of detectable mineral carbonates. Carbonates are present in C horizons at depths of 23-41 cm. Soil reaction of the A1 and B2 hori-
zons in these soils ranged from pH 6.3 to 7.7, with electrical conductivities varying from 0.2 to 1.1 mmhos per cm.

Discussion

Artemisia arbuscula, A. longiloba, and A. nova vegetation is present in numerous states surrounding Nevada (Ward, 1953; Beetle, 1960). Studies in these areas have generally indicated that the distributions of these species are edaphically determined.

Eckert (1957), Tueller (1962), Culver (1964), Hall (1967), and Dealy (1971) found A. arbuscula associations in central and southeastern Oregon to occur on soils that were shallow, stony, and had moderately to strongly structured B2t horizons high in clay and very close to the soil surface. Hugie, Passey, and Williams (1964) and Tisdale, Hironaka, and Fosberg (1965) in southern Idaho and Robertson, Nielsen, and Bare (1966) in Colorado report similar morphology for soils underlying A. longiloba communities. Fosberg and Hironaka (1964) compared soils supporting A. arbuscula and A. tridentata communities in southern Idaho. A. arbuscula was restricted to soils that had a clay B horizon or bedrock within 33 cm from the surface or to weakly developed soils that were as deep as 50 cm but had over 30 percent gravels and cobbles distributed throughout their profiles. Soils supporting A. tridentata communities were deeper and had weaker profile development. They suggested that the properties of the A. arbuscula soils result in conditions of poor aeration in the rooting zone during the winter and spring months due to the development of a perched water table above the dense clay horizon or bedrock. Summerfield (1969) concluded that the depth of a clayey horizon of prominent, compound prismatic, and blocky structure below the soil surface was the only consistent morphological difference between soils supporting A. arbuscula and A. tridentata communities in northwestern Nevada. These horizons occurred from 7 to 31 cm under A. arbuscula communities and 31 to 53 cm under A. tridentata communities.

Shantz (1925), Shreve (1942), Fautin (1946), Thatcher (1959), and Richards and Beatley (1965) describe A. nova communities occurring on gravelly, shallow soils on ridgetops or slopes. Andre, Mooney, and Wright (1965) observed that in the White Mountains of California A. nova was most prevalent on limestone areas. Hironaka (1963) found that A. nova occurred on highly calcareous soils and shallow gravelly soils developed from limestone parent material.

Although there is considerable variation in the soils of the habitat types described in this study, four salient features appear consistently among the soils. These features are: (1) shallowness and thinness of the sola, (2) presence of a dense clay B horizon close to the soil surface, (3) a high volume of gravel throughout the profile, and (4) presence of mineral carbonates throughout most sola of the A. nova habitat types. The regularity of occurrence of these features is confirmed by the studies of Blackburn et al. (1968, 1969) of the vegetation and associated site characteristics on watersheds through-
out northern Nevada. The presence of a dense clay B horizon was the most commonly occurring feature among the *A. arbuscula* and *A. longiloba* soils. In soils lacking this prominent horizon, very high gravel volumes occurred throughout the profile. Not all of the soils that lacked this dense clay B horizon were shallow, however. Several of the soils contained no restricting layer within a meter of the soil surface, indicating that extreme droughtiness may be the dominant physical factor of these soils. Shalloyness, high gravel volumes, and presence of large quantities of mineral carbonates were the most commonly occurring features of the *A. nova* soils.

Acknowledgments

This paper is based on a portion of a thesis prepared for the Master of Science degree in range science by the senior author. Financial support was provided by Regional Project W-89, Characterization of Habitat Types on Sagebrush Ranges. The authors are grateful to Dr. G. H. Ward, Knox College, Galesburg, Illinois, and Dr. A. A. Beetle, University of Wyoming, Laramie, for verifying identification of *Artemisia* specimens and to Mr. L. N. Langan, Soil Conservation Service, Reno, Nevada, for assistance in identification of the soils.

Literature Cited

