Photopolymer-Based Stratified Volume Holographic Optical Elements

Gregory P. Nordin
nordin@byu.edu

A. R. Tanguay

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Electrical and Computer Engineering Commons

Original Publication Citation

BYU ScholarsArchive Citation
https://scholarsarchive.byu.edu/facpub/711

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact ellen_amatangelo@byu.edu.
Photopolymer-based stratified volume holographic optical elements

Gregory P. Nordin* and Armand R. Tanguay, Jr.

Optical Materials and Devices Laboratory, Center for Photonic Technology, and National Center for Integrated Photonic Technology, University of Southern California, Los Angeles, California 90089-0483

Received June 12, 1992

We report the implementation of stratified volume holographic optical elements (SVHOE’s) using DuPont’s Omnidec holographic photopolymer material and an in situ exposure technique for simultaneous multilayer grating recording. Experimental measurement of the +1-order angular sensitivity of a seven-layer SVHOE structure shows remarkable agreement with both theory and numerical simulation for incidence angles near the Bragg angle. For SVHOE’s having modulation layers that individually operate in the Bragg or transition diffraction regimes, the envelope of the SVHOE angular sensitivity is experimentally shown to approximate closely that of a single modulation layer.

Stratified volume holographic optical elements (SVHOE’s) are a recently proposed class of novel diffraction structure in which multiple layers of a thin holographic material are interleaved with optically homogeneous buffer layers.¹⁻³ These structures exhibit unique diffraction properties with potential applications in areas such as optical array generation,¹⁻³ wavelength notch filtering, and grating spatial frequency filtering.²⁻³ In addition, SVHOE’s can be designed to emulate the diffraction properties of conventional volume holographic optical elements.¹⁻³ As such, the SVHOE concept allows holographic media that are currently available only in thin-film form to be used in certain applications that require thick holographic optical elements. In this Letter we report the fabrication of photopolymer-based SVHOE structures using DuPont’s Omnidec thin-film holographic material,⁴ which allows for simultaneous holographic recording in all the modulation layers.

The periodic angular sensitivity characteristic of SVHOE diffraction behavior was first described in ref. 1, in which both theoretical calculations and experimental demonstration were reported. The SVHOE used in the experimental measurement was constructed by stacking photoresist layers (each on its own substrate) in which identical diffraction gratings had previously been recorded.¹ In SVHOE’s fabricated with such prerecorded gratings, alignment of the grating fringes in the modulation layers is naturally an important issue, particularly when many layers are involved. The photopolymer-based SVHOE’s described herein were exposed to grating recording beams after assembly of the structures. This in situ exposure technique provides for autoalignment of the gratings from layer to layer. Use of the DuPont photopolymer material (which is a permanent holographic medium) is especially convenient in this context because it requires no post-exposure wet chemical fixing process (such as that required for both dichromated gelatin and Polaroid’s DMP-128 material). Instead, fixing is accomplished by exposure to a uniform beam at the wavelength of the grating recording beam or by exposure to ultraviolet illumination.

DuPont’s holographic photopolymer material is available in formulations optimized for either transmission or reflection holograms and can contain dye sensitizers that cover several wavelength ranges in the visible spectrum.⁵ The blue-green-sensitized transmission photopolymer HRF-150 is available in several forms, the most common of which is a 38-μm-thick film on a flexible Mylar backing.

The modulation layers in our SVHOE structures were spin coated from a solution of HRF-150 photopolymer. Separate photopolymer and blue-green dye solutions from DuPont were used to obtain custom photopolymer/dye concentrations. The composite solution used for fabrication of the seven-layer SVHOE illustrated in Fig. 1 consisted of a 1:110 ratio of dye solution to 15% photopolymer solution by weight. Thin films were formed on commercially available glass coverslips by spin coating at 3000 rpm for 2 min. The relatively long spin duration was used to aid in drying the films. The resultant photopolymer films were 1.8 μm thick and had an absorption coefficient of 140 cm⁻¹ at 488 nm (unexposed).

Because the photopolymer is tacky after spinning, the photopolymer-coated coverslips can be directly attached to a flat surface by pressing the film side of the coverslip onto the surface. In our case, the first photopolymer-coated coverslip was mounted directly onto a glass slide, and each subsequently coated coverslip was mounted onto the back surface of the preceding coverslip. The combined thickness of a coverslip and photopolymer layer was 150 μm.

For the particular SVHOE shown in Fig. 1, the number of modulation layers was limited to seven in order to minimize grating strength nonuniformities in the photopolymer layers that result from absorption in previous layers. From the parameters given

0146-9592/92/231709-03$5.00/0 © 1992 Optical Society of America
thicknesses to ensure that each layer individually period of the grating written in the photopolymer layers SVHOE shown in Fig. 1. The resultant 1.93-μm pe-
modulation depths.

the same intensities in order to achieve near-unity each 488-nm recording beam was between 110 and that we fabricated). In all cases, the intensity of between 90 and 140
exposures of approximately 2

ing strengths in the photopolymer layers, increased exposures that are incorporated in the BPM simulations. The result is shown
For incidence angles outside of the angular range shown in Fig. 2, the agreement between experiment and numerical simulation decreases, in that the experimentally measured diffraction peaks assume a double-lobed structure and exhibit a larger angular separation than the BPM simulations predict. The angular locations of the peaks can be accurately predicted by considering the relative phases of the zero and +1 orders as they propagate from layer to layer without making the small-angle approximation that is incorporated in the BPM simulations.

After measurement of its angular sensitivity, the seven-layer SVHOE was disassembled layer by layer, and the angular sensitivity was remeasured after each photopolymer-coated coverslip was removed. Measurements for six, four, and two layers are shown in Fig. 3. Note that as the total device thickness decreases, the angular width of the diffraction peaks increases as expected. In addition, the sidelobe

is the total thickness of the modulation layers, and \(\lambda \) is the wavelength of the readout beam. The refractive-index modulation calculated from this expression is \(3.7 \times 10^{-3} \), which is approximately a factor of 2 less than that reported in Ref. 5 (for a corresponding grating period of 1.0 μm). This is consistent with our experimental observation that the refractive-index modulation recorded in the photopolymer exhibits a strong dependence on the grating spatial frequency.

With the use of this value for the refractive-index modulation, the angular sensitivity of the seven-layer SVHOE was simulated by using the optical beam-propagation method (BPM). The result is shown as the dashed curve in Fig. 2. Note the remarkable agreement between numerical simulation and experimental measurement for both the main peaks and the sidelobes over the angular range shown in the figure. Comparison of the measured peak diffraction efficiency at Bragg incidence with that obtained by direct numerical simulation shows excellent agree-
ment, thus validating the estimate of the refractive-index modulation obtained above by applying the traditional relationship applicable for a conventional bulk grating.

For incidence angles outside of the angular range shown in Fig. 2, the agreement between experiment and numerical simulation decreases, in that the experimentally measured diffraction peaks assume a double-lobed structure and exhibit a larger angular separation than the BPM simulations predict. The angular locations of the peaks can be accurately predicted by considering the relative phases of the zero and +1 orders as they propagate from layer to layer without making the small-angle approximation that is incorporated in the BPM simulations.

After measurement of its angular sensitivity, the seven-layer SVHOE was disassembled layer by layer, and the angular sensitivity was remeasured after each photopolymer-coated coverslip was removed. Measurements for six, four, and two layers are shown in Fig. 3. Note that as the total device thickness decreases, the angular width of the diffraction peaks increases as expected. In addition, the sidelobe

is the total thickness of the modulation layers, and \(\lambda \) is the wavelength of the readout beam. The refractive-index modulation calculated from this expression is \(3.7 \times 10^{-3} \), which is approximately a factor of 2 less than that reported in Ref. 5 (for a corresponding grating period of 1.0 μm). This is consistent with our experimental observation that the refractive-index modulation recorded in the photopolymer exhibits a strong dependence on the grating spatial frequency.

With the use of this value for the refractive-index modulation, the angular sensitivity of the seven-layer SVHOE was simulated by using the optical beam-propagation method (BPM). The result is shown as the dashed curve in Fig. 2. Note the remarkable agreement between numerical simulation and experimental measurement for both the main peaks and the sidelobes over the angular range shown in the figure. Comparison of the measured peak diffraction efficiency at Bragg incidence with that obtained by direct numerical simulation shows excellent agree-
ment, thus validating the estimate of the refractive-index modulation obtained above by applying the traditional relationship applicable for a conventional bulk grating.

For incidence angles outside of the angular range shown in Fig. 2, the agreement between experiment and numerical simulation decreases, in that the experimentally measured diffraction peaks assume a double-lobed structure and exhibit a larger angular separation than the BPM simulations predict. The angular locations of the peaks can be accurately predicted by considering the relative phases of the zero and +1 orders as they propagate from layer to layer without making the small-angle approximation that is incorporated in the BPM simulations.

After measurement of its angular sensitivity, the seven-layer SVHOE was disassembled layer by layer, and the angular sensitivity was remeasured after each photopolymer-coated coverslip was removed. Measurements for six, four, and two layers are shown in Fig. 3. Note that as the total device thickness decreases, the angular width of the diffraction peaks increases as expected. In addition, the sidelobe

is the total thickness of the modulation layers, and \(\lambda \) is the wavelength of the readout beam. The refractive-index modulation calculated from this expression is \(3.7 \times 10^{-3} \), which is approximately a factor of 2 less than that reported in Ref. 5 (for a corresponding grating period of 1.0 μm). This is consistent with our experimental observation that the refractive-index modulation recorded in the photopolymer exhibits a strong dependence on the grating spatial frequency.

With the use of this value for the refractive-index modulation, the angular sensitivity of the seven-layer SVHOE was simulated by using the optical beam-propagation method (BPM). The result is shown as the dashed curve in Fig. 2. Note the remarkable agreement between numerical simulation and experimental measurement for both the main peaks and the sidelobes over the angular range shown in the figure. Comparison of the measured peak diffraction efficiency at Bragg incidence with that obtained by direct numerical simulation shows excellent agree-
ment, thus validating the estimate of the refractive-index modulation obtained above by applying the traditional relationship applicable for a conventional bulk grating.

For incidence angles outside of the angular range shown in Fig. 2, the agreement between experiment and numerical simulation decreases, in that the experimentally measured diffraction peaks assume a double-lobed structure and exhibit a larger angular separation than the BPM simulations predict. The angular locations of the peaks can be accurately predicted by considering the relative phases of the zero and +1 orders as they propagate from layer to layer without making the small-angle approximation that is incorporated in the BPM simulations.
structure is exactly as predicted in Refs. 1 and 3; i.e., an SVHOE having N modulation layers has \(N - 2 \) sidelobes between each pair of adjacent periodic diffraction peaks.

Not all thin-film photosensitive materials will be thin enough to yield strictly Raman-Nath diffraction behavior within each modulation layer under all possible conditions. When such modulation layers individually exhibit Bragg\(^6\) or transition regime (i.e., neither Bragg nor Raman-Nath) diffraction behavior, the uniform periodic angular sensitivity of an SVHOE is modified by an envelope function that should be equal to the angular sensitivity of a single modulation layer according to Ref. 1. This behavior was experimentally verified as follows. A five-layer SVHOE was constructed as described above, except that the thin-film photopolymer layers were spun from a 20% photopolymer solution at 2000 rpm, resulting in films that were 4.6 \(\mu \text{m} \) thick. After assembly, a 1.93-\(\mu \text{m} \) period grating was recorded in the structure. The angular sensitivity of the +1 order of the five-layer SVHOE is shown in Fig. 4, along with the angular sensitivity of a single 4.6-\(\mu \text{m} \)-thick photopolymer film exposed under identical conditions. Note that the angular sensitivity of the single photopolymer film does, in fact, closely approximate the envelope of the five-layer SVHOE diffraction response, with the exception that the former is slightly broader. The difference may be due to nonuniform grating amplitudes within each SVHOE photopolymer layer, unequal layer-to-layer grating strengths, variations in the buffer layer thicknesses, or some combination thereof.

In summary, we have demonstrated the fabrication of SVHOE structures using a photopolymer holographic material that allows for \textit{in situ} multilayer grating exposure. For SVHOE's with modulation layers that individually operate in the Raman-Nath regime, experimental measurements of the +1-order angular sensitivity were found to be in excellent agreement with both theoretical predictions and numerical simulations for angles near Bragg incidence. For SVHOE's with thick modulation layers that operate in the transition or Bragg regimes, the angular sensitivity of a single modulation layer was experimentally demonstrated to determine the envelope of the periodic +1-order diffraction peaks, in agreement with a previous theoretical prediction.

This research was supported in part by the Defense Advanced Research Projects Agency through the U.S. Air Force Office of Scientific Research (National Center for Integrated Photonic Technology). G. Nordin gratefully acknowledges support from a Hughes Doctoral Fellowship and a Center for Photonic Technology Graduate Prize Fellowship at the University of Southern California. We are pleased to express our appreciation to E. I. du Pont de Nemours and Company, Inc., for making the photopolymer material available to us.

*Present address, Department of Electrical and Computer Engineering, The University of Alabama in Huntsville, Huntsville, Alabama 35899.

References