Jul 13th, 3:30 PM - 3:50 PM

The Economics of Agricultural Water Productivity in the Blue Nile

Imeshi Weerasinghe
Vrije Universiteit Brussel (VUB), imeshi.weerasinghe@vub.ac.be

James Booker
Environmental Economics, Siena College, jbooker@siena.edu

Wim Bastiaanssen
Global Water Accounting, UNESCO-IHE, w.bastiaanssen@unesco-ihe.org

Lisa-Marie Rebelo
Remote Sensing and GIS, Integrated Water Management Institute (IWMI), l.rebelo@cgiar.org

Ann van Griensven
Environmental Economics, Siena College, Global Water Accounting, UNESCO-IHE, avgriens@vub.ac.be

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the [Civil Engineering Commons](https://scholarsarchive.byu.edu/civilengineeringcommons), [Data Storage Systems Commons](https://scholarsarchive.byu.edu/datasystemscommons), [Environmental Engineering Commons](https://scholarsarchive.byu.edu/environmentalengineeringcommons), [Hydraulic Engineering Commons](https://scholarsarchive.byu.edu/hydraulicengineeringcommons), and the [Other Civil and Environmental Engineering Commons](https://scholarsarchive.byu.edu/othercivilengineeringcommons)

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
The Economics of Agricultural Water Productivity in the Blue Nile

Imeshi Weerasinghea, James Bookerb, Wim Bastiaanssenc, Lisa-Marie Rebelod, Ann van Griensvenbc)

aHydrology and Hydraulic Engineering Department, Vrije Universiteit Brussel (VUB), Imeshi.Weerasinghe@vub.ac.be, avgriens@vub.ac.be.
bEnvironmental Economics, Siena College, jbooker@siena.edu.
cGlobal Water Accounting, UNESCO-IHE, w.bastiaanssen@unesco-ihe.org.
dRemote Sensing and GIS, Integrated Water Management Institute (IWMI), L.REBELO@cgiar.org.

Abstract: Agricultural Water Productivity (AWP) is often simplified as the ‘crop per drop’, described as the output in terms of yield or biomass per unit of water input. This purely physical measure of Water Productivity (WP) using only a single factor input (water) does not consider: (1) the level of other inputs used in conjunction with water, (2) the opportunity cost of water as an input, (3) the value of the output and (4) the costs of production for different crops. This study presents a justification and methodology for incorporating these factors into WP indicators. The application of these extensions to WP in a data poor region is demonstrated for the Blue Nile using the new Water Accounting Plus (WA+) framework. Particular attention is made to the use of globally applicable, remotely sensed data sources for estimation of physical and socioeconomic variables. An advantage of using the WA+ framework in calculating WP is that it provides basin water information partitioned into ‘blue’ and ‘green’ water, land use categories, consumptive and non-consumptive and beneficial and non-beneficial water as well as information on return flows. Extending single factor measures of WP should result in more theoretically justified yet practical WP results, making this a more comparable measure from basin to basin and sub-basin to sub-basin.

Keywords: Water Productivity, Environmental Economics, Agriculture, Water Accounting.