Service-based Processing of MODIS Global Terrestrial Evapotranspiration Data for Hydrological Modelling

C. Siegert
Institute of Geography/GIScience Group, University of Jena

S. Kralisch
Institute of Geography/GIScience Group, University of Jena, nsk@uni-jena.de

A. Künne
Institute of Geography/GIScience Group, University of Jena

D. Nüst
Institute for Geoinformatics, University of Muenster, daniel.nuest@wwu.de

B. Proß
52°North Initiative for Geospatial Open Source Software GmbH, b.proß@52north.org

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

https://scholarsarchive.byu.edu/iemssconference/2016/Stream-C/41

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Service-based Processing of MODIS Global Terrestrial Evapotranspiration Data for Hydrological Modelling

C. Siegerta, S. Kralischa, A. Künnea, D. Nüstb, B. Proßc, C. Staschc

a Institute of Geography/GIScience Group, University of Jena, Germany (nsk@uni-jena.de)
b Institute for Geoinformatics, University of Muenster, Germany (daniel.nuest@wwu.de)
c 52°North Initiative for Geospatial Open Source Software GmbH, Muenster, Germany (b.pross@52north.org)

Abstract: Current challenges of understanding and assessing the impacts of climate and land use changes on ecosystems worldwide demand for an ever increasing integration of data and process knowledge in environmental simulation models. While the growing performance of multi-processor computer environments and the availability of well-tested data products with global coverage provide the basis to address this demand, the seamless and automated pre-processing of existing information and their integration into environmental models often remains a crucial point. Here, Web Processing Services (WPS) can be used for an easily usable, standardized geo-information processing that links data with models. This work presents a WPS that allows to prepare MODIS global terrestrial evapotranspiration data for application in hydrological models using a two-step approach. In a first step, a mapping between MODIS raster cells and a set of target geometry features is created. Based on this mapping, the second step generates time series of interpolated MODIS data for each target geometry. The use of parallel processing in both steps of the procedure and its service-based implementation ensures high runtime performance and flexible operation. The suitability of the overall procedure will be shown in a real-world application of a spatially distributed hydrological model which takes MODIS evapotranspiration data as input to simulate runoff in a mesoscale river basin in southeastern Brazil.

Keywords: MODIS ET; evapotranspiration; hydrological modelling; Web Processing Service; WPS.