International Congress on Environmental Modelling and Software

8th International Congress on Environmental Modelling and Software - Toulouse, France - July 2016

Jul 13th, 9:30 AM - 9:50 AM

Balancing trade-offs among aquatic ecosystem services while navigating through regime shifts

Romina Martin
Stockholm Resilience Centre, Stockholm University, romina.martin@su.se

Maja Schlüter
Stockholm Resilience Centre, Stockholm University, maja.schlueter@su.se

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

Martin, Romina and Schlüter, Maja, "Balancing trade-offs among aquatic ecosystem services while navigating through regime shifts" (2016). International Congress on Environmental Modelling and Software. 58. https://scholarsarchive.byu.edu/iemssconference/2016/Stream-B/58

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Balancing trade-offs among aquatic ecosystem services while navigating through regime shifts

Romina Martin, Maja Schlüter
romina.martin@su.se, Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
maja.schlueter@su.se, Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden

Abstract:
Eutrophication can cause shallow lakes to experience regime shifts from the clear to the turbid state which impairs multiple dependent ecosystem services (such as drinking water or sites for recreational activities). While in most cases the clear state is seen as favorable, once it shifted to the turbid, its restoration is difficult and the costs often outweigh the expected benefits. While in some places costly restorations are under way, e.g. through biomanipulation and wetland construction, it remains challenging to implement measures that are able to support multiple ecosystem services simultaneously without compromising other connected services. More precisely, lake managers need to consider the temporal and spatial decoupling between lake use activities by beneficiaries and the activities from distant actors eventually polluting the lake.

Here, we present a simulation model to demonstrate how understanding of underlying feedbacks that support either the desired or undesired state can give a much more promising picture for restoring desired ecosystem states and services. To achieve this more holistic view about restoring ecosystem services, we assume a coupled social-ecological system where ecosystem beneficiaries respond to deteriorating ecosystem indicators and regulate their impacts accordingly. As an example, we explore simulations of shallow lake restoration, prone to regime shifts, with three alternative scenarios of social reinforcement for adopting more effective sewage treatment technology. By analyzing the emerging response time lags from different levels of decision making, we go beyond traditional single driver analyses and provide management perspectives for intentionally navigating through a regime shift to restore the desired ecosystem state and its dependent services.

Keywords: social-ecological interaction; regime shifts; shallow lake restoration; co-production; ecosystem services