Jul 11th, 11:10 AM - 11:30 AM

An Integrated Modelling Approach for Analyzing the Land-Use Effects of German Bioenergy Policies

Rüdiger Schaldach
Center for Environmental Systems Research (CESR), University of Kassel, schaldach@usi.uni-kassel.de

Daniela Thrän
Deutsches Biomasseforschungszentrum (DBFZ)

Verena Wolf
Johann Heinrich von Thünen-Institut (TI)

Jan Schüngel
Center for Environmental Systems Research (CESR), University of Kassel

Markus Millinger
Helmholtz Zentrum für Umweltforschung GmbH (UFZ),

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the [Civil Engineering Commons](https://scholarsarchive.byu.edu/civilengineering), [Data Storage Systems Commons](https://scholarsarchive.byu.edu/datastorage), [Environmental Engineering Commons](https://scholarsarchive.byu.edu/environmentalengineering), [Hydraulic Engineering Commons](https://scholarsarchive.byu.edu/hydraulicengineering), and the [Other Civil and Environmental Engineering Commons](https://scholarsarchive.byu.edu/otheercivilandenvironmentalengineering)

Schaldach, Rüdiger; Thrän, Daniela; Wolf, Verena; Schüngel, Jan; Millinger, Markus; Hennenberg, Klaus; and Banse, Martin, "An Integrated Modelling Approach for Analyzing the Land-Use Effects of German Bioenergy Policies" (2016). International Congress on Environmental Modelling and Software. 121.
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-D/121

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Presenter/Author Information
Rüdiger Schaldach, Daniela Thrän, Verena Wolf, Jan Schängel, Markus Millinger, Klaus Hennenberg, and Martin Banse

This event is available at BYU ScholarsArchive: https://scholarsarchive.byu.edu/iemssconference/2016/Stream-D/121
An Integrated Modelling Approach for Analyzing the Land-Use Effects of German Bioenergy Policies

Rüdiger Schaldacha, Daniela Thränb, Verena Wolfc, Jan Schüngela, Markus Millingerd, Klaus Hennenberge, Martin Bansec

aCenter for Environmental Systems Research (CESR), University of Kassel,
bDeutsches Biomasseforschungszentrum (DBFZ), Leipzig,
cJohann Heinrich von Thünen-Institut (TI), Braunschweig,
dHelmholtz Zentrum für Umweltforschung GmbH (UFZ), Leipzig, eÖko-Institut e.V., Darmstadt.

Abstract: The use of energy carriers derived from biomass is an essential element of the German strategy for transforming its energy system towards renewable energy sources. In order to assess the sustainability of the related biomass production it is important to analyze the environmental impacts of land-use change both domestically and in biomass exporting regions. For this purpose the MILESTONE modelling framework has been developed. It integrates a national bioenergy model (BENSIM) with a global economic model (MAGNET) and a global land-use model (LandSHIFT). The presentation concentrates on the linkage between MAGNET and LandSHIFT which represent the global land-use system within the framework. First, the harmonization of the models and the implemented coupling mechanism are explained. Second, we give an overview of the involved model and data uncertainties, and show results from a sensitivity analysis regarding the effect of changes in GDP in the economic model on global land-use change. In the third part of the presentation we show results from a global scenario analysis using the coupled models. Here we demonstrate how different national strategies for bioenergy use in combination with national and international policies for ecosystem protection affect global land-use patterns and how the coupled model can help to identify and quantify risks for biodiversity and soil quality loss in exporting regions that are linked to biomass consumption in Germany.

Keywords: Global land-use modelling; model coupling; bioenergy policies; environmental impacts.