3-30-1970

A new species of oribatid mite (Cryptostigmata: Oribatellidae)

William B. Grabowski

Colorado State University, Fort Collins

Follow this and additional works at: https://scholarsarchive.byu.edu/gbn

Recommended Citation
Available at: https://scholarsarchive.byu.edu/gbn/vol30/iss1/2

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellenamatangelo@byu.edu.
A NEW SPECIES OF ORIBATID MITE
(CRYPTOSTIGMATA: ORIBATELLIDAE)

William B. Grabowski

The genus *Oribatella* Banks, 1895, contains 22 species, many of which were poorly described in the light of modern systematic standards. In reviewing the Oribatellidae (Grabowski, 1967), I found that little attention was given to such characteristics as chaetotaxy of the legs, dorsal and ventral hysterosomal setation, morphology of the gnathosoma, arrangement of genital setae, and presence and placement of porose areas. Such details are included in this description.

Oribatella anomola n. sp.
(Figures 1-5)

Diagnosis

This representative differs from other species of *Oribatella* in the peculiar morphology of the lateral and ventral setae on the genu, tibia, and tarsus of legs one and two, and the iteral and pro-ral setae on tarsus one. All of these setae are enlarged, barbed, and spindle shaped. The laterals of the genu and tibia are the most striking in this aspect and are readily evidenced under low power of the microscope. I have assigned the name *anomola*, meaning strange or different.

Description

Lamellae deeply bifid, lamellar cleft U-shaped to block U-shaped, lateral dentes with two to four notches on anterolateral borders, lateral areas of lamellar cusps, finely ridged, mesial dentes lying close together for two-thirds their length distally, then separating to form the cleft (Figure 1); lamellar hairs long, barbed, interlamellar hairs reaching to tips of lamellar hairs, thinner by comparison, barbed, and inserting laterad, close to dorsosejugal suture; pseudostigmatic organ elongate, clavate, finely barbed distally for two-thirds its length.

Hysterosoma approximately as broad as long, pteromorphs shallowly decurved, their entire surface finely wrinkled; eight pairs of smooth, medium length setae arranged as given in Figure 1; three pairs of porose areas, each occurring on a slight elevation; A₉ located near setae D₉ within a triangle formed by scapular seta C₉ and notogastral setae D₉ and L₉, A₁ equidistant between setae D₉ and L₉, A₂ equidistant between L₉ and L₁ (Figure 1).

Camerstome oval, rutella diarthric, one pair of short, finely barbed posterior infracapitular (mental) setae, one pair of median in-

1Zoology Department, Colorado State University, Ft. Collins, Colorado 80521
fracapitular (rutellar) setae, entire surface of infracapitulum finely punctate; setation of pedipalp segments as given in Figures 2, 3; chelicerae chelate (Figure 5).

Ventral surface finely punctate, coxisternal setae 3a-b, and 4a-b finely barbed. 1a-c and 2a smooth, 3c and 4c absent from all specimens examined; genital plate with six pairs of setae: g₁ and g₂ on anterior edge of each cover, g₃, g₄, and g₅ in a line oriented mesially and running parallel to opening, g₆ in posterior median corner of
Discussion

The representative is unique owing to the peculiar morphology of certain of the leg setae described above. The absence of coxiasternal setae 3c and 4c is difficult to explain and the dorsal setal nomenclature must remain provisional. Little information is available concerning developmental stages of these features. However, the pattern of dorsal setation demonstrated here appears standard for most species of Oribatella, although previous workers have reported from eight to eleven pairs of dorsal notogastral (hysterosoma) setae (Grabowski, 1967).

Literature Cited

