Jul 12th, 5:50 PM - 6:10 PM

System Identification and Control of Rivers

Hasan Arshad Nasir
The University of Melbourne, hnasir@student.unimelb.edu.au

Erik Weyer
The University of Melbourne, ewey@unimelb.edu.au

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

https://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/72

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by anauthorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
System Identification and Control of Rivers

Hasan Arshad Nasir¹ and Erik Weyer²
Department of Electrical and Electronic Engineering,
The University of Melbourne, 3010, Victoria, Australia,
¹hnasir@student.unimelb.edu.au, ²ewey@unimelb.edu.au

Abstract: Here we present findings from on-going research on how to improve the management and efficiency of river operations using data based modelling and control engineering. The objectives of the river operations include minimisation of flow and water level deviations from their required set-points, on-time water deliveries to irrigators and flood risk mitigation. Due to long time delays in rivers, forecasts of flows in tributaries are required, and control strategies for rivers should be able to accommodate such forecasts. Here we propose to use system identification techniques to obtain models of the rivers which are very simple, but sufficient for control design, and a Stochastic Model Predictive Control strategy for control of a river. The control problem is formulated as a chance-constrained optimisation problem and a solution is found using a scenario approach. The developed modelling and control framework has been successfully applied, in simulations, to the upper part of Murray River in Australia. The strategy worked well and achieved the objectives identified by the river operators.

Keywords: Data-based modelling; Model Predictive Control; Chance-constrained optimisation problem; Scenario approach; Flood risk mitigation