Multi-label classification methods for predicting mixed land use change

Hichem Omrani
Urban development and Mobility department, LISER, hichem.omrani@liser.lu

Amin Tayyebi
University of California-Riverside, Center for Conservation Biology, University of California-Riverside, amin.tayyebi@gmail.com

Amir H. Tayyebi
University of Houston, amirhossein.tayyebi@gmail.com

Bryan Pijanowski
Purdue University, bpijanow@purdue.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

https://scholarsarchive.byu.edu/iemssconference/2016/Stream-C/15

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Multi-label classification methods for predicting mixed land use change

Hichem Omrani¹, Amin Tayyebi²,³, and Amir H. Tayyebi⁴, Bryan Pijanowski⁵
¹Urban development and Mobility department, LISER, Luxembourg (hichem.omrani@liser.lu)
²University of California-Riverside, Center for Conservation Biology, 900 University Ave, Riverside, CA 92521, United States (amin.tayyebi@gmail.com)
³University of California-Riverside, Department of Botany and Plant Sciences, 900 University Ave, Riverside, CA 92521, United States
⁴Department of Civil and Environmental Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77004, United States (amirhossein.tayyebi@gmail.com)
⁵Department of Forestry and Natural Resources, Purdue University, USA (bpjanow@purdue.edu)

Abstract: Current progress on land use highlights the interest of the multi-label concept in predicting land use change. The new concept allows a multi-label class assignment (ML), where a spatial unit may be associated simultaneously with a set of multiple classes. The multi-label concept is different than the commonly used mono-label one (ml: binary or multi-class), in which a spatial unit has only one elementary label at a time. Recently, it has been shown the merit of the ML concept to model mixed land use change. In this paper, we study the multi-label class-assignment by different multi-label classifications models. The well-known classifiers, support vector machine (MLSVM), k-nearest neighbor (MLkNN) and artificial neural network (MLANN), adapted to multi-label learning, were applied to predict the mixed land use changes for the Grand Duchy of Luxembourg. The methods are compared by several established criteria. Results show that the MLANN slightly overcomes other alternatives (MLSVM and MLANN). Findings show that multi-label classification methods perform well in capturing land use patterns in details and complexity and help planners and decision-makers to make better use of them for better urban planning.

Keywords: Land use; Class-assignment; Multi-label concept; Machine learning.