Evapotranspiration Mapping using SEBAL Algorithms to account for agricultural water uses in the Upper Pangani, Tanzania

Anna Msigwa
The Nelson Mandela African Institution of Science and Technology, Vrije Universiteit Brussel, annamsigwa@gmail.com

Ann van Griensven
Vrije Universiteit Brussel, UNESCO-IHE Institute for Water Education, ann.vangriensven@gmail.com

Hans C. Komakech
The Nelson Mandela African Institution of Science and Technology, hans.komakech@nm-aist.ac.tz

Boud Verbeiren
Vrije Universiteit Brussel, bverbeir@vub.ac.be

Tim Hessels
UNESCO-IHE Institute for Water Education, t.hessels@unesco-ihe.org

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

https://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/54

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen amatangelo@byu.edu.
Presenter/Author Information
Anna Msigwa, Ann van Griensven, Hans C. Komakech, Boud Verbeiren, Tim Hessels, and Wim G. M. Bastiaanssen

This event is available at BYU ScholarsArchive: https://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/54
Abstract Title: Evapotranspiration Mapping using SEBAL Algorithms to account for agricultural water uses in the Upper Pangani, Tanzania

1Anna Msigwa\(^a\,^b\), 2Ann van Griensven\(^b\,^c\), 3Hans C. Komakech\(^a\), 4Boud Verbeiren\(^b\), 5Tim Hessels\(^c\), 6Wim.G.M Bastiaanssen\(^c\)

\(^a\)The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
\(^b\)Vrije Universiteit Brussel, Belgium
\(^c\)UNESCO-IHE Institute for Water Education, Delft, The Netherland

E-mail: 1annamsigwa@gmail.com, 2ann.vangriensven@gmail.com, 3hans.komakech@nm-aist.ac.tz, 4bverbeir@vub.ac.be, 5T.Hessels@unesco-ihe.org, 6wim.bastiaanssen@gmail.com.

Abstract: To make informed decisions, river basin managers requires information on demands and actual usage from different sectors in the basin. Such water use information has to be adequate in terms of quantities used per sector, where and when. However, because of high costs of maintaining equipment for monitoring use, it is very difficult to obtain this information in developing arid and semi-arid areas of Sub-Saharan Africa. The use of proxy method such as calculation of evapotranspiration is proposed as a cheaper means for such data acquisition. Water consumption through crop evapotranspiration (ET) is a major component of water withdrawal, accounting for about 90% of the annual rainfall in arid and semi-arid areas, hence its estimation is crucial. In irrigated areas, ET is also a measure for the consumptive use of blue water (abstracted from rivers, reservoirs or groundwater) by agriculture. Spatial and temporal information of ET can thus help in the quantification of water use. The objective of this study is to test the utility of the new Surface Energy Balance Algorithm for Land (SEBAL 3.3) programmed in Python in estimating ET in the upper Pangani basin, Tanzania. SEBAL is a satellite based image processing model that estimates ET as a residual of a surface energy balance. The obtained results are compared against maps of the water abstraction schemes. From the results, we are able to identify the areas and land uses with higher evaporative losses. Such information is invaluable for the management of closing basin such as the Pangani.

Keywords: water accounting; surface energy balance and upper Pangani basin