Jul 11th, 2:50 PM - 3:10 PM

A Combined ABM-CA Approach for Analysing Effects of Peer-Influence and Landowner Decision-Making on Urban Development Patterns

J. Koch
University of Oklahoma, jakoch@ou.edu

M. A. Dorning
Geosciences and Environmental Change Science Center, U.S. Geological Survey

S. M. Beck
Center for Geospatial Analytics, Department of Forestry and Environmental Resources, North Carolina State University

G. M. Sanchez
Center for Geospatial Analytics, Department of Forestry and Environmental Resources, North Carolina State University

A. Shashidharan
Center for Geospatial Analytics, Department of Computer Science, North Carolina State University

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

https://scholarsarchive.byu.edu/iemssconference/2016/Stream-D/85

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Presenter/Author Information


This event is available at BYU ScholarsArchive: https://scholarsarchive.byu.edu/iemssconference/2016/Stream-D/85
A Combined ABM-CA Approach for Analysing Effects of Peer-Influence and Landowner Decision-Making on Urban Development Patterns

J. Koch¹, M.A. Dorning², S.M. Beck³, G.M. Sanchez³, A. Shashidharan³, L.S. Smart³, J.W. Smith⁶, D.B. van Berkel³, Q. Zhang³, R.K. Meentemeyer³

¹Department of Geography and Environmental Sustainability, University of Oklahoma (jakoch@ou.edu)
²Geosciences and Environmental Change Science Center, U.S. Geological Survey
³Center for Geospatial Analytics, North Carolina State University
⁴Department of Forestry and Environmental Resources, North Carolina State University
⁵Department of Computer Science, North Carolina State University
⁶Department of Environment & Society, Utah State University

Abstract: In many parts of the U.S., population growth combined with continued demand for low-density housing is transforming the structure of peri-urban landscapes. Despite the substantial amount of privately owned land, the important decision-making roles that individual landowners play in shaping patterns of urbanization and landscape change is understudied. We introduce a data-informed simulation model developed to analyse the decision-making processes that determine spatial characteristics of fragmentation in peri-urban areas by combining the utility of a cellular automata urban growth algorithm (CA module), based on the FUTURES model, with an agent-based model (ABM module). The CA module is conceptualized as a ‘developer’ in the urbanization process and responds to demand for development by selecting candidate development locations based on site suitability factors. The ABM module is composed of landowner agents categorized by typologies of willingness to sell (WTS). Their WTS allows the CA module to convert a location to a new development. We consider landowner typologies that differ in preferences, values and socio-economic characteristics, leading to variation in WTS and subsequently different urban growth patterns. We also include peer influence as an integral component of the landowners’ decision-making processes. To test the spatio-temporal behaviour of the simulations, we applied the model for Cabarrus County in North Carolina. The simulation results show specific landscape characteristics that are the result of landowner decisions as prescribed by our model, and others that do not align with our hypotheses. These simulations contribute to further description of processes underlying emergent urban growth patterns in heterogeneous landscapes and mixed ownership characteristics.

Keywords: Urbanization; Cellular Automata; Agent-based Modelling; Land Systems; FUTURES