Towards Multifunctionality of Landscapes – A Multi-Objective Land Use Optimization Framework for Exploring Interaction between Ecosystem Services and Biodiversity

Michael Strauch
Helmholtz Centre for Environmental Research-UFZ

Anna Cord
Helmholtz Centre for Environmental Research-UFZ

Andrea Kaim
Helmholtz Centre for Environmental Research-UFZ

Carola Pätzold
Helmholtz Centre for Environmental Research-UFZ

Christian Schweitzer
German Federal Environment Agency-UBA

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

See next page for additional authors

Strauch, Michael; Cord, Anna; Kaim, Andrea; Pätzold, Carola; Schweitzer, Christian; Seppelt, Ralf; and Volk, Martin, "Towards Multifunctionality of Landscapes – A Multi-Objective Land Use Optimization Framework for Exploring Interaction between Ecosystem Services and Biodiversity" (2016). International Congress on Environmental Modelling and Software. 79.
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-D/79

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Towards Multifunctionality of Landscapes – A Multi-Objective Land Use Optimization Framework for Exploring Interaction between Ecosystem Services and Biodiversity

Michael Straucha, Anna Corda, Andrea Kaima, Carola Pätzolda, Christian Schweitzerb, Ralf Seppelta, c, Martin Volka, c

aHelmholtz Centre for Environmental Research-UFZ, Department Computational Landscape Ecology, German Federal Environment Agency-UBA, Martin-Luther-University Halle Wittenberg. Presenting author: martin.volk@ufz.de

Abstract: The sustainable appropriation of resources and the design of multifunctional landscapes requires the finding of solutions that minimize trade-offs between contrasting goals of land use, ecosystem services and biodiversity. Substantial progress has been made in the model-based quantification of land-use effects on ecosystem services and biodiversity over the past years, but finding ‘optimal’ land use patterns is still one of the challenges. Existing implementations of multi-objective land use optimization often have shortcomings or are not well designed for meeting multiple demands. For example, users may wish to include computationally extensive and complex process-based or statistical models to define their objective functions. Further, land use optimization has to consider user-defined constraints for the transformation rules between different land uses, to allow the exclusion of certain areas (e.g., patches) from the optimization and to include ways to limit the total area of each land use type based on minimum and maximum thresholds. Building upon recent advances of how to consider such spatial constraints, we present the framework CoMOLA (Constrained Multi-Objective Land Allocation). It is a freely available spatially-explicit optimization routine based on the NSGA-II genetic algorithm, which embraces multiple objectives and the mentioned user-defined constraints. Specifically, we have included a new variator to efficiently generate feasible solutions and a novel approach to test the feasibility of solutions. CoMOLA may be applied to address a wide range of different research questions and is aimed to facilitate interdisciplinary and comprehensive assessments of the performance (and limits) of a landscape based on multiple criteria such as environmental quality indicators, biodiversity indicators but also economic returns. The different options to constrain the spatial optimization in order to achieve more realistic results further ease the involvement of stakeholders in the study design and evaluation of the results. Related to presented framework, the role of modelling for evaluating sustainability and the multifunctionality of landscapes “in science and practice” are discussed in the presentation.

Keywords: Multifunctionality; Sustainability; Land Use Optimization; Ecosystem Services; Biodiversity; Modelling.