Integrated optical waveguides with liquid cores

Aaron R. Hawkins
hawkins@ee.byu.edu

John P. Barber
johnpbarber@yahoo.com

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Electrical and Computer Engineering Commons

Original Publication Citation

BYU ScholarsArchive Citation
Hawkins, Aaron R.; Barber, John P.; Yin, Dongliang; Deamer, D. W.; and Schmidt, Holger, "Integrated optical waveguides with liquid cores" (2004). All Faculty Publications. 412.
https://scholarsarchive.byu.edu/facpub/412

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Integrated optical waveguides with liquid cores

D. Yin, D. W. Deamer, and H. Schmidt

School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064

J. P. Barber and A. R. Hawkins

ECE Department, Brigham Young University, 459 Clyde Building, Provo, Utah 84602

(Received 23 December 2003; accepted 20 August 2004)

We report the design, fabrication, and demonstration of single-mode integrated optical waveguides with liquid cores. The principle of the device is based on antiresonant reflecting optical (ARROW) waveguides with hollow cores. We describe design principles for waveguide loss optimization down to 0.1/cm. Using a fabrication process based on conventional silicon microfabrication and sacrificial core layers, waveguides of varying widths and lengths with volumes covering the pico- to nanoliter range were fabricated. We observe confined mode propagation, measure waveguide losses of 2.4/cm, and demonstrate that the waveguides possess tailorable wavelength selectivity. The potential for highly integrated, sensitive devices based on these properties of the ARROW waveguides is discussed. © 2004 American Institute of Physics. [DOI: 10.1063/1.1807966]

Numerous applications could benefit from the availability of an integrated optical platform that enables light propagation through small volumes of liquids on a chip. Such applications include chemical sensing, fluorescence spectroscopy in biology, biochemistry, biomedicine, flow cytometry, pollution monitoring, and others. Generally, optical sensing and spectroscopy of liquids has been carried out in channels with cores wider than 50 μm, typically using glass or Pyrex channels with associated optical coupling losses when connected to optical fibers.1,2 For studies with extremely high sensitivity such as single-molecule detection in molecular biology, bulky three-dimensional microscopy setups are being used.3,4 In contrast, the features and advantages of an integrated approach are compact size, planar geometry, potential for massively parallel architectures with multiple waveguides on one chip, increased sensitivity, and higher level integration with additional sources or detection elements. However, it is generally not possible to create single-mode integrated optical waveguides with liquid or hollow cores using conventional waveguides that are based on index guiding. Such nonsolid core materials have lower refractive indices (approximately 1.33 for water, 1 for air) than typical solid materials used for integrated optics, thus precluding confined light propagation over appreciable distances in small (micron-sized) cores. Currently, the only cladding materials suitable for index guiding of light in an aqueous core are amorphous copolymers of polytetrafluoroethylene (Teflon AF) with an index of ≳1.29.5 However, waveguides with Teflon AF coatings have large diameters (≃50 μm) and are not compatible with conventional microfabrication processes in integrated optics. Possible alternative ways to guide light in low-index media include photonic crystal structures such as holey fibers and omniguides.6,7 These can also not easily be integrated in two-dimensional planar structures and rely on long-range periodicity to open up the required photonic bandgaps.

We have proposed an approach to achieve all of the above desired attributes that enables single-mode light propagation in liquids on a chip.8 The concept is based on antiresonant reflecting optical (ARROW) waveguides.9 The ARROW principle is depicted in Fig. 1(a). The low-index core is surrounded by high-index cladding layers with a thickness chosen such that they act as a highly reflective Fabry–Perot cavity for the transverse wave vector k_T at the design wavelength. The confinement that is created in this way allows for low-loss propagation over large distances (many centimeters) despite the fact that the optical mode is

[Image: Side view of ARROW waveguide structure with liquid core. High-index cladding layers act as Fabry–Perot reflectors for the transverse wave vector k_T. (b) Waveguide loss for fundamental ARROW mode vs core width (solid line) and nonguiding water/glass capillary (dashed line) (d_c = 3.5 μm). Inset: Front view of ARROW structure with incident polarization.]

DOI: 10.1063/1.1807966
leaky. The concept has been utilized mainly for semiconduc-
tor laser applications10,11 using ARROW confinement either in transverse or lateral direction. A method to fabricate hol-
low waveguides based on the ARROW principle was pro-
posed in which MEMS technology and wafer bonding would be combined.12 Here, we present the design, fabrication, and optical characteri-
zeation of integrated ARROW structures with liquid cores using conventional silicon microfabrication and sacrificial core layers. We demonstrate optical confine-
ment and propagation through micron-scale fluid channels that contain picoliter to nanoliter volumes and present mea-
surements of the waveguide loss at various wavelengths. In addi-
tion, we investigate the wavelength selectivity of the structures and how the wavelength response can be tailored by adjusting the cladding layer thickness.

For sample and process design, we chose silicon nitride ($n = 2.05$) and silicon dioxide ($n = 1.46$) as ARROW cladding materials due to their compatibility with silicon microfabri-
cation and the potential for further integration. The most im-
portant design consideration is the minimization of wave-
guide loss. The minimum required thickness d_i for the ith cladding layer away from the core can be calculated in the same way as for a solid-core ARROW and is given by13

$$d_i = \frac{\lambda}{4 \sqrt{(n_i^2 - n_c^2) + \frac{\lambda^2}{4 d_c^2}}}$$

for cores with $d_c = \lambda$, where n_i and n_c are the cladding and core refractive indices, d_c is the core thickness, and λ is the wavelength. Following Eq. (1), a sample for low-loss propa-
gation in water ($n = 1.33$) can be designed. As will be shown in the following, these ARROW waveguides can be built with rectangular cores surrounded by the dielectric cladding layers as shown in the inset of Fig. 1(b) along with the po-
larization direction of the incident light. The resulting wave
guide loss can be calculated either by using a three-
dimensional mode solver [FIMMWAVE, (c) Photon Design] or to a very good approximation by adding the one-dimensional losses for a TE mode in transverse and a TM mode in lateral direction. Figure 1(b) shows the loss as a function of core
width for a sample with $d_3 = 3.5 \mu m$, $d_1 = 110 \text{nm}$, $d_2 = 281 \text{nm}$, and $\lambda = 690 \text{nm}$ (solid line). The loss is two to
three orders of magnitude lower than in a channel clad by
SiO$_2$ only (dashed line). It decreases with increasing core
width and is dominated by the loss in the lateral direction. A rectangular core with three top and bottom cladding periods represents a compromise between achieving low loss and fabrication complexity. Additional cladding layers would fur-
ther reduce the loss, but in reality other loss mechanisms such as scattering will eventually dominate. The rectangular
shape is easy to realize but leads to relatively high lateral
loss. Other lateral confinement methods such as a ridge in the
top SiO$_2$ layer or lateral variation of the core thickness add some complexity to the fabrication process but can lead to
further improvement.

Two major criteria were addressed for successful wave-
guide fabrication: choosing a sacrificial core material that
leads to smooth sidewalls and can be etched with high sele-
ctivity and, second, growth of a thick SiO$_2$ top layer which
provides mechanical stability as well as another antiresonant
confinement layer. Based on these principles, we developed
the following fabrication process: (1) Alternating oxide and

\textbf{FIG. 2. SEM image of hollow-core ARROW waveguide (core dimensions: 3.5 by 12 \(\mu m\)).}
expected profile (lines) assuming ARROW confinement in both transverse and lateral direction. Excellent agreement is observed without using any fitting parameters and a mode area (full width at half maximum) of 7.8 μm² is measured. This also indicates that the ridge did not have the correct height to affect the lateral confinement for this sample.

Next, the waveguide loss was determined by recording the intensity throughput as a function of waveguide length. The results for a sample with core width 24 μm are shown in Fig. 4(a). By fitting the data to a decaying exponential, a loss of 2.4 cm⁻¹ is observed at 633 nm. At 785 nm, we could not observe any transmission which implies a loss of at least 10 cm⁻¹ based on the current sensitivity of our setup. Both loss data are shown in Fig. 4(b) along with the calculated loss values (1.14 and 11.7 cm⁻¹, respectively) including both contributions from higher order modes and the slightly smaller thickness of the laterally confining ARROW layers. The experimental values are in good qualitative agreement with calculations. The discrepancy is mainly due to scattering and absorption losses in the waveguide and thickness variations within the ARROW confinement layers. We emphasize that the wavelength dependence of the loss is strong and can be tailored by choosing the ARROW layer thicknesses while maintaining low loss at one design wavelength. This wavelength selectivity is demonstrated by the dashed line in Fig. 4(b), showing the fundamental mode loss of an optimized structure with high loss of 81 cm⁻¹ at 633 nm, but low loss of 0.15 cm⁻¹ at 690 nm (arrows in Fig. 4). These wavelengths lie within the absorption and emission bands of conventional dyes (e.g., Alexa 647), which makes these waveguides especially attractive for fluorescence and Raman scattering studies of biomolecules.

In summary, we have demonstrated low-loss light propagation in liquid channels integrated on a semiconductor chip by fabricating and testing integrated ARROW waveguides with liquid cores. These devices can be used to guide light through picoliter to nanoliter volumes. In addition to their small size, they offer properties that are desirable for many applications, especially sensing in liquids and studies of single biomolecules. These include single-mode propagation, potential for integration of numerous waveguides, and tailorable wavelength selectivity.

The authors would like to thank E. Despain for assistance with SEM imaging. This work is supported by the NIBIB/NIH.