Jul 11th, 8:50 AM - 9:10 AM

Exploring socio-hydrological dynamics with a hybrid hydrological agent-based model

Anastasia Lobanova
Potsdam Institute for Climate Impact Research, lobanova@pik-potsdam.de

Francesco Lamperti
Scuola Superiore Sant’Anna, flamperti@sssup.it

Andrea Roventini
Scuola Superiore Sant’Anna, a.roventini@sssup.it

David Tabara
Institute of Environmental Science and Technology (IEST), Universitat Autònoma de Barcelona, Global Climate Forum e.V., jdt@sustainabilogy.eu

Stefan Liersch
Potsdam Institute for Climate Impact Research, liersch@pik-potsdam.de

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

Lobanova, Anastasia; Lamperti, Francesco; Roventini, Andrea; Tabara, David; Liersch, Stefan; and Krysanova, Valentina, "Exploring socio-hydrological dynamics with a hybrid hydrological agent-based model" (2016). *International Congress on Environmental Modelling and Software*. 56.

https://scholarsarchive.byu.edu/iemssconference/2016/Stream-D/56

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Exploring socio-hydrological dynamics with a hybrid hydrological agent-based model

Anastasia Lobanova¹, Francesco Lamperti², Andrea Roventini², David Tabara³,⁴, Stefan Liersch¹, and Valentina Krysanova¹

¹Potsdam Institute for Climate Impact Research, Telegraphenberg A31, 14437, Potsdam, Germany; Anastasia Lobanova: lobanova@pik-potsdam.de; Stefan Liersch: liersch@pik-potsdam.de
Hagen Koch: koch@pik-potsdam.de; Valentina Krysanova: krysanova@pik-potsdam.de; Fred Hattermann: hattermann@pik-potsdam.de;
²Scuola Superiore Sant’Anna, Piazza Martiri della Liberta’, 33, 56127 Pisa, Italy; Francesco Lamperti: f.lamperti@sssup.it; Andrea Roventini: a.roventini@sssup.it
³Institute of Environmental Science and Technology (IEST), Universitat Autònoma de Barcelona Campus UAB 08193 Cerdanyola del Vallès, Barcelona; jdt@sustainabilogy.eu
⁴Global Climate Forum e.V., Neue Promenade 6, 10178 Berlin, Germany

Keywords: agent-based model; hydrological modelling; decision making; water management; Tagus; climate change

The rivers cannot be anymore analyzed as solely natural systems, because their hydrological dynamics is defined to a greater extent by strategic human decisions and management to meet social and economic water demands. The necessity of coupling local social dynamics with hydrological processes for river catchments analysis is around for a decade and more and more authors are speaking about the concept of human-natural systems and the ways to investigate their mutual effects dynamically. Following this idea, the studies on the impacts of climatic change on the hydrological systems has to incorporate the mutual effects of the socio-hydrological system to investigate its resilience as well as ways of system transformation to increase its adaptive capacity to projected changes. Recently, agent-based models (ABM) have proven their strength in representing complex social and economic dynamics, where the interaction of heterogeneous agent gives raise to emergent phenomena. In this work, we take a fresh theoretical path combining hydrological process-based model (Soil and Water Management Model) SWIM with an ABM in order to capture the socio-hydrological evolution of the Tagus River headwaters under climate change. The two models will interact on the monthly time step exchanging information about the decision making processes of agents (farmers, river and reservoir authorities, Segura beneficiaries) in the ABM and run-off and water volumes information calculated by SWIM. The ensuing SWIM-ABM hybrid can then be employed as a laboratory to design and test the effects of different transformative policies.