CO2 emissions scenarios from a database of diverse socio-economic pathways

Céline Guivarch
CIRED, guivarch@centre-cired.fr

Julie Rozenberg
World Bank, jrozenberg@worldbank.org

Vanessa Schweizer
University of Waterloo, vanessa.schweizer@uwaterloo.ca

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

Guivarch, Céline; Rozenberg, Julie; and Schweizer, Vanessa, "CO2 emissions scenarios from a database of diverse socio-economic pathways" (2016). *International Congress on Environmental Modelling and Software*. 50.
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-D/50

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
CO2 emissions scenarios from a database of diverse socio-economic pathways

Céline Guivarcha, Julie Rozenbergb, Vanessa Schweizerc

a CIRED (guivarch@centre-cired.fr)
b World Bank (jrozenberg@worldbank.org)
c University of Waterloo (vanessa.schweizer@uwaterloo.ca)

Abstract: The Shared Socio-economic Pathways, or SSPs, are the next generation of socio-economic scenarios following the SRES. The SSP framework recognizes that different socio-economic conditions may lead to similar levels of emissions, or radiative forcing. This implies that any given level of radiative forcing may have very different socio-economic impacts depending on the conditions associated with it. To uncover different socio-economic conditions associated with any level of radiative forcing, we propose a methodology based on “scenario discovery” cluster analysis. With a database of hundreds of scenarios, we demonstrate how this method can identify very different groups of socio-economic scenarios sharing common CO2 emissions outcomes. We find that high emissions scenarios can occur under conditions of either high or low GDP per capita growth. We also find that for the high per capita GDP and high emissions scenarios, high productivity growth and catch-up are not necessarily required.

Keywords: Scenario discovery; Diversity; Socioeconomic pathways; Emissions scenarios; Database