Jul 11th, 9:30 AM - 9:50 AM

The SHERPA Methodology and Implementation to Explore Potential Air Quality Improvements at the Regional/Local Scales

Enrico Pisoni
European Commission, Joint Research Centre, enrico.pisoni@jrc.ec.europa.eu

Philippe Thunis
European Commission, Joint Research Centre

Bart Degraeuwe
European Commission, Joint Research Centre

Alain Clappier
University of Strasbourg

Giuseppe Maffeis
TerrAria srl

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

Pisoni, Enrico; Thunis, Philippe; Degraeuwe, Bart; Clappier, Alain; Maffeis, Giuseppe; Gianfreda, Roberta; and Ferrari, Fabrizio, "The SHERPA Methodology and Implementation to Explore Potential Air Quality Improvements at the Regional/Local Scales" (2016). *International Congress on Environmental Modelling and Software*. 37.

https://scholarsarchive.byu.edu/iemssconference/2016/Stream-A/37

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen amatangelo@byu.edu.
The SHERPA Methodology and Implementation to Explore Potential Air Quality Improvements at the Regional/Local Scales

Enrico Pisoni\(^a\), Philippe Thunis\(^a\), Bart Degraeuwe\(^a\), Alain Clappier\(^b\), Giuseppe Maffeis\(^c\), Roberta Gianfreda\(^c\), Fabrizio Ferrari\(^c\)

\(^a\) European Commission, Joint Research Centre, Via Enrico Fermi 2749, 21027 Ispra, Italy
(enrico.pisoni@jrc.ec.europa.eu)

\(^b\) Laboratoire Image Ville Environnement, University of Strasbourg, 3, rue de l'Argonne, Strasbourg

\(^c\) TerrAria srl, via M. Gioia 132 20125 Milan, Italy

Abstract: This work presents the SHERPA tool (Screening for High Emission Reduction Potentials on Air quality), a simplified air quality model that has been recently developed at the European Commission Joint Research Centre, to simulate the effect of local emission reduction policies on air pollution. The SHERPA methodology is based on the concept of source-receptor models, that is to say on the use of simplified models able to mimic the link between emissions and concentrations as simulated by a complex deterministic Chemical Transport Model. As “family” of source-receptor models in SHERPA we used “linear regressions”, designed to simulate yearly PM25, PM10 and NO2 ground-level concentrations. More in details, source-receptor models have been trained and validated using data from the CHIMERE Chemical Transport Model, run at roughly 7×7 km\(^2\) resolution over Europe, using emissions as derived by the recent “2013 Clear Air Policy Package” to keep consistency with “higher level” EU policies. Starting from these source-receptor models, SHERPA produces a set of indicators to support policymakers in their decisions. In particular it helps answering the following questions, for a given regional/local domain:

1. What is the potential for local action (is pollution locally created or originating from outside)?
2. What are the key activity/sectors and pollutants to tackle first and
3. Which spatial scale (region, province, city...) should be considered to take efficient actions?

In this contribution an overview of the SHERPA tool will be provided, with particular emphasis on the methodology, and showing an example of application.