12-31-1956

Notes on louse-host associations of the Great Salt Lake Desert with keys to the lice

Carlo M. Igonoffo

University of Utah

Follow this and additional works at: https://scholarsarchive.byu.edu/gbn

Recommended Citation

Available at: https://scholarsarchive.byu.edu/gbn/vol16/iss1/3

This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
NOTES ON LOUSE-HOST ASSOCIATIONS OF THE
GREAT SALT LAKE DESERT WITH KEYS TO THE LICE

Carlo M. Igonoffo

INTRODUCTION

This study is concerned with the sucking lice of mammals, exclusive of bats, found in the southern arm of the Great Salt Lake Desert in northwestern Utah. The region includes the western parts of Box Elder, Tooele and Juab Counties. Contained in the keys are nineteen species of lice representing eight genera, which include those collected in this area as well as those known to occur on the same hosts in adjacent areas. These lice occur on twenty-two of the thirty-four species of mammals found in the study area. There are twenty-four genera of mammals of which the rodents account for approximately two-thirds of the total species. The numerical associations of lice and mammals are listed in Table I.

Table I
Numerical associations of the lice and mammals.

<table>
<thead>
<tr>
<th>Host Order</th>
<th>Number of Mammal Species</th>
<th>Number of Louse Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagomorpha</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Rodentia</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>Carnivora</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Artiodactyla</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table I indicates that the majority of the lice in this area have been found on the rodents. Of seven species of carnivores only one is known to carry lice.

The lice associated with the rodents are restricted to the families Cricetidae, Sciuridae, Muridae, and Heteromyidae. In these families the greatest number of louse associations per species of host represented occurred in the family Muridae (1 host, 3 lice). The Sciuridae, Cricetidae, and Heteromyidae follow in the order listed. These numerical associations are presented in Table II.

Table II
Louse associations of the families of rodents of the Great Salt Lake Desert.

<table>
<thead>
<tr>
<th>Rodent Family</th>
<th>Species</th>
<th>Louse Species</th>
<th>Rodent-louse Associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muridae</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sciuridae</td>
<td>5</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Cricetidae</td>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Heteromyidae</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

1. University of Utah Ecological Research, Dugway, Utah.
The following sources were utilized in preparing the key and louse-host list: Ferris (1916, 1919-1935, 1951); Kellogg and Ferris (1915); Hopkins (1942); Durrant (1952).

The figures of each plate are arranged so that the top or left of each plate points cephalad. In some cases a small arrow designates the particular characteristics under consideration. A notation such as "II-1" in the key refers to figure one as depicted on plate II. In the keys and louse-host list, the presence of one asterisk after the louse species indicates an association which is known from other areas, but has not yet been found to occur in the Great Salt Lake Desert. Two asterisks denotes the recovery of the species from the host in the southern part of the Great Salt Lake Desert.

The study was conducted at Ecological Research, University of Utah, Dugway, Utah. Acknowledgements are made to the many workers of this group who aided in trapping and brushing the mammals as well as in the preliminary preparation of the specimens.
ILLUSTRATED KEY TO THE SUCKING LICE KNOWN OR SUSPECTED TO OCCUR IN THE GREAT SALT LAKE DESERT

1. Pleural plates of second to seventh abdominal segments absent or reduced; abdomen membranous except in the genital region, (Fig. II-1) .. 2

Pleural plates of second to seventh abdominal segments present and well developed (Fig. II-2), except in *Neohaematopinus laeviusculus* where they are modified as hook-shaped sclerites (Fig. III-17); abdomen not membranous

2. Abdominal segments with more than one row of setae per segment (Fig. II-3); occiput produced into thorax (Fig. II-4); occurring on coyotes, Genus LINOGNATHUS: one species .. setosus*

Abdominal segments with one row of setae per segment (Fig. II-6); occiput not produced into thorax (Fig. II-5); not occurring on coyotes ... 3

3. Pleural plates distinctly present on the second to fourth abdominal segments (Fig. II-1); meso- and metatarsi

Figures not included in the text.
projected into point at outer basal angle (Fig. II-7); occurs on rodents, Genus FAHRENHOLZIA 5
Pleural plates absent or when present reduced to minute plates; tarsi not as described above; occurs on the Lago-
morpha and Artiodactyla .. 4

4. Head with distinct, rounded, posterior antennal angle (Fig. II-8); occurs on the black-tailed jackrabbit and the Audu-
bon cottontail, Genus HAEMODIPSUS: one species setoni**
Head without distinct, rounded, posterior antennal angle (Fig. II-9); occurs on the mule deer, Genus SOLENOP.
TES: one species .. ferrisi*

5. Sternal plate octagon-shaped (Fig. II-10); with definite sides, pleural plate of the third segment of the largest
single abdominal sclerite (Fig. II-11); the shortest seta

![Diagram](attachment:image.png)

of the paired setae on this plate one-fourth of the length of the long seta; occurs on the little pocket mouse, Great
Basin pocket mouse and the Ord kangaroo rat pinnata**
Sternal plate oval-shaped without definite sides (Fig. II-
12); pleural plate of the third segment not the largest
single sclerite (Fig. II-13); the shortest seta of the paired setae of this plate less than one-sixth the length of the long seta; occurs on the Great Basin pocket mouse and the long-tailed pocket mouse reducta**

6. Second abdominal sternite with a posterior-projecting process (Fig. II-14); ventral abdominal segments with one row of setae per segment (Fig. II-6); head without a deeply indented post-antennal angle (Fig. II-9); occurring primarily on ground squirrels, Genus ENDERLEINELUS

Second abdominal sternite without a posterior-projecting process; ventral abdominal segments with one or more rows of setae per segment (Fig. II-3); head with a definite indented post-antennal angle (Fig. II-8) ... 7

7. Two to four setae on the second abdominal tergite; setae short and stout, generally few in number; fourth abdominal tergite on males with two to six long setae in the median group; occurs on the rock squirrel osborni*

Nine to eighteen setae on the second abdominal tergite; setae long and slender; males without long setae in the median group; occurs on the Townsend and antelope ground squirrels suturalis**

8. First pair of abdominal pleurites located on the dorsum (Fig. II-15); Genus HOPOPLEURA .. 9

First pair of abdominal pleurites located laterally (Fig. II-16) .. 12

9. Sternal plate shieldlike (Fig. II-17); length of posterior point less than one-half the greatest width of the plate; tergites and pleurites separated by more than three times the width of the widest tergite (Fig. II-18) ... 10

Sternal plate arrow-head shape (Fig. II-19); posterior point more than one-half the greatest width of the plate; tergites and pleurites separated by less than three times the width of the tergite (Fig. II-20) ... 11

10. Lobes of the pleural plates of the fourth abdominal segment at least one-third the length of the plate on which they are borne (Fig. III-2); occurs on the least chipmunk and the northern grasshopper mouse arboricola**

Lobes of the pleural plates of the fourth abdominal segment less than one-third the length of the plate on which they are borne (Fig. III-1); occurs on the Townsend ground squirrel and the cliff chipmunk erratica**

11. Dorsal marginal setae present (Fig. I); notch of the third pleural plate less than twice as long as wide (Fig. III-3); occurs on the long-tailed meadow mouse and the house mouse acanthopus*

Dorsal marginal setae absent; notch of the third pleural plate at least twice as long as wide (Fig. III-4); occurs on the long-tailed pocket mouse, white-footed deer mouse, northern grasshopper mouse, pinyon mouse, canyon mouse, house mouse, and the western harvest mouse hesperomydis-reithrodontomydis complex ... 11a

11a. The males of hesperomydis and reithrodontomydis appear to be identical. The females may be separated as follows: Dorsal lobe of pleurite seven definitely acute apically (Fig. III-5) ... 11a

Dorsal lobe of pleurite seven broad and apically truncate (Fig. III-6); occurs on western harvest mouse reithrodontomydis**

12. Ventral abdominal segments with at least eight setae per row; second abdominal tergite posteriorly emarginate in
the males (Fig. III-7); sternal plate emarginate posteriorly (Figs. III-8, 9, 10); or with a posterior projecting process (Fig. III-2); or triangle-shaped; occurs on ground squirrels and wood rats, Genus NEOHAEMA-TOPINUS .. 13

Ventral abdominal segments with five to seven setae per row; second abdominal tergite not posteriorly emarginate in the males; sternal plate not emarginate posteriorly or with a posterior projecting process (Figs. II-11, 18, 19); occurs on mice, Genus POLYPLAX 17

13. Sternal plate posteriorly emarginate (Fig. III-8, 9, 10) 14

14. Abdominal tergites present in males and females, often reduced in the females (Fig. III-13); occurs on ground squirrels .. 15

Abdominal tergites reduced or absent in females and reduced in the males (Fig. III-14); occurs on the bushy-tailed wood rat .. 16

15. Pleural plate one absent, represented by a setal group (Fig. III-15); second pleural plate triangle-shaped with three setae evenly spaced along the edge of the pleurite; at least one seta of this group longer than the greatest length of the plate; occurs on the antelope ground squirrel ... 17

Pleural plate one small, but definitely present (Fig. III-16); second pleural plate rectangle-shaped with paired setae located on the inner third of pleurites; setae no longer than the greatest length of the plate; occurs on the Townsend ground squirrel 18

16. Sternal plate hexagonal in shape with posterior projection (Fig. III-12); pleural plates modified as hook-shaped sclerites (Fig. III-17); occurs on the rock squirrel ... 19

Sternal plate triangular in shape with the angles rounded; posterior margin truncate, projection absent; pleurites not reduced to hook-shaped sclerites; occurs on the desert wood rat .. 20

Probable new species**

17. Sternal plate pear-shaped with the anterior corners rounded; occurs on the house mouse ... 21

Sternal plate not pear-shaped .. 22

18. Sternal plate concave anteriorly, posterior edge truncate (Fig. III-18); occurs on the white-footed deer mouse .. 23

Sternal plate not concave anteriorly; posterior edge not truncate (Fig. III-19); occurs on the long-tailed meadow mouse .. 24

HOST KEY TO THE SUCKING LICE KNOWN OR SUSPECTED TO OCCUR ON MAMMALS. EXCLUSIVE OF BATS, OF THE GREAT SALT LAKE DESERT

Occurs on:
1. Rodents ... 4
2. Other mammals .. 2

Rabbits: Audubon cottontail (Sylvilagus audubonii) and the black-tailed jackrabbit (Lepus californicus) .. Haemodipsus setoni Ewing**

3. Other mammals .. 3
Louse-Host Associations

<table>
<thead>
<tr>
<th>Host Species</th>
<th>Louse Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mule deer (Odocoileus hemionus)</td>
<td>Solenoptes ferrisi ferrhenholzia*</td>
</tr>
<tr>
<td>Coyote (Canis latrans)</td>
<td>Linognathus setosus Olfers*</td>
</tr>
<tr>
<td>Squirrels and chipmunks (family Sciuridae)</td>
<td>5</td>
</tr>
<tr>
<td>Mice and rats (families Heteromyidae, Muridae and Cricetidae)</td>
<td>8</td>
</tr>
<tr>
<td>Chipmunks: cliff chipmunk (Eutamias dorsalis) and the least chipmunk (Eutamias minimus)</td>
<td>Hoplopleura arboricola Kellogg and Ferris**</td>
</tr>
<tr>
<td>Rock and ground squirrels</td>
<td>6</td>
</tr>
<tr>
<td>Rock squirrel (Citellus variegatus)</td>
<td>Neohaematopinus laeviusculus Grube* Enderleinellus osborni Kellogg and Ferris*</td>
</tr>
<tr>
<td>Ground squirrels</td>
<td>7</td>
</tr>
<tr>
<td>Antelope ground squirrel (Citellus leucurus)</td>
<td>Ferris*</td>
</tr>
<tr>
<td>Townsend ground squirrel (Citellus townsendii)</td>
<td>Neohaematopinus citellinus Ferris** Enderleinellus suturalis Osborn*</td>
</tr>
<tr>
<td>Heteromyidae (pocket mice and kangaroo rats)</td>
<td>9</td>
</tr>
<tr>
<td>Muridae and Cricetidae</td>
<td>11</td>
</tr>
<tr>
<td>Pocket mice (Perognathus spp.)</td>
<td>10</td>
</tr>
<tr>
<td>Ord kangaroo rat (Dipodomys ordii)</td>
<td>Ferrhenholzia pinnata Kellogg and Ferris**</td>
</tr>
<tr>
<td>Great Basin pocket mouse (Perognathus parvus)</td>
<td>Ferrhenholzia pinnata Kellogg and Ferris** Ferrhenholzia reducta Ferris**</td>
</tr>
<tr>
<td>Little pocket mouse (Perognathus longimembris)</td>
<td>Ferrhenholzia pinnata Kellogg and Ferris**</td>
</tr>
<tr>
<td>Long-tailed pocket mouse (Perognathus formosus)</td>
<td>Ferrhenholzia reducta Kellogg and Ferris**</td>
</tr>
<tr>
<td>House mouse (Mus musculus)</td>
<td>Hoplopleura hesperomydis Osborn* Hoplopleura acanthopus Burmeister* Polyplax serrata Burmeister*</td>
</tr>
<tr>
<td>Other rats and mice</td>
<td>12</td>
</tr>
<tr>
<td>Wood rats (Neotoma spp.)</td>
<td>13</td>
</tr>
<tr>
<td>Other rodents</td>
<td>14</td>
</tr>
<tr>
<td>Desert wood rat (Neotoma lepida)</td>
<td>Neohaematopinus sp.*</td>
</tr>
<tr>
<td>Bushy-tailed wood rat (Neotoma cinerea)</td>
<td>Neohaematopinus inornatus Kellogg and Ferris*</td>
</tr>
<tr>
<td>White-footed mice (Peromyscus spp.)</td>
<td>15</td>
</tr>
<tr>
<td>Other mice (grasshopper, harvest and meadow mice)</td>
<td>16</td>
</tr>
<tr>
<td>Canyon mouse (Peromyscus crinitus)</td>
<td>Hoplopleura hesperomydis Osborn** Hoplopleura hesperomydis Osborn** Polyplax auricularis Kellogg and Ferris**</td>
</tr>
<tr>
<td>Deer mouse (Peromyscus maniculatus)</td>
<td>Polyplax auricularis Kellogg and Ferris**</td>
</tr>
<tr>
<td>Pinyon mouse (Peromyscus truei)</td>
<td>Hoplopleura hesperomydis Osborn**</td>
</tr>
<tr>
<td>Long-tailed meadow mouse (Microtus longicaudus)</td>
<td>Hoplopleura hesperomydis Osborn** Polyplax absctica Ferrhenholzia*</td>
</tr>
<tr>
<td>Northern grasshopper mouse (Onychomys leucogaster)</td>
<td>Hoplopleura hesperomydis Osborn**</td>
</tr>
<tr>
<td>Western harvest mouse (Reithrodonotomys megalotis)</td>
<td>Hoplopleura reithrodonotomys Ferris**</td>
</tr>
</tbody>
</table>
HOST-LICE ASSOCIATIONS OF MAMMALS, 2
EXCLUSIVE OF BATS, OF THE GREAT SALT LAKE DESERT

Canis latrans (coyote)
 Linognathus setosus Olfers*
Citellus leucurus (antelope ground squirrel)
 Neohaematopinus citellinus Ferris**
 Enderleinellus suturalis Osborn**
Citellus townsendii (Townsend ground squirrel)
 Neohaematopinus pacificus Kellogg and Ferris*
 Neohaematopinus laeviusculus Grube**
 Hoplopleura arboricola Kellogg and Ferris*
 Enderleinellus suturalis Osborn*
Citellus variegatus (rock squirrel)
 Neohaematopinus laeviusculus Grube*
 Enderleinellus osborni Kellogg and Ferris*
Dipodomys ordii (Ord kangaroo rat)
 Fahrenholzia pinnata Kellogg and Ferris**
Eutamias dorsalis (cliff chipmunk)
 Hoplopleura arboricola Kellogg and Ferris**
Eutamias minimus (least chipmunk)
 Hoplopleura arboricola Kellogg and Ferris**
Lepus californicus (black-tailed jackrabbit)
 Haemodipsus setoni Ewing**
Microtus longicaudus (long-tailed meadow mouse)
 Hoplopleura acanthopus Burmeister*
 Polyplax abscisa Fahrenholzia*
Mus musculus (house mouse)
 Hoplopleura hesperomydis Osborn*
 Hoplopleura acanthopus Burmeister*
 Polyplax serrata Burmeister*
Neotoma lepida (desert wood rat)
 Neohaematopinus sp.**
Neotoma cinerea (bushy-tailed wood rat)
 Neohaematopinus inornatus Kellogg and Ferris*
Odocoileus hemionus (mule deer)
 Solenoptes ferrisi Fahrenholzia*
Onychomys leucogaster (northern grasshopper mouse)
 Hoplopleura hesperomydis Osborn**
 Hoplopleura arboricola Kellogg and Ferris**
Perognathus formosus (long-tailed pocket mouse)
 Hoplopleura hesperomydis Osborn**
 Fahrenholzia reducta Ferris**
Perognathus longimembris (little pocket mouse)
 Fahrenholzia pinnata Kellogg and Ferris**
Perognathus parvus (Great Basin pocket mouse)
 Fahrenholzia pinnata Kellogg and Ferris**
 Fahrenholzia reducta Ferris**
Peromyscus crinitus (canyon mouse)
 Hoplopleura hesperomydis Osborn**
Peromyscus maniculatus (deer mouse)
 Hoplopleura hesperomydis Osborn**
 Polyplax auricularis Kellogg and Ferris**

2. Arranged alphabetically according to genus
Peromyscus truei (pinyon mouse)
Hoplopleura hesperomydis Osborn**
Reithrodontomys megalotis (western harvest mouse)
Hoplopleura reithrodontomydis Ferris**
Sylvilagus audubonii (Audubon cottontail)
Haemodipsus setoni Ewing**

REFERENCES