Simulating regional-scale soil nitrous oxide emissions in Scotland

Vasileios Myrgiotis
Scotland Rural College & University of Edinburgh, vasileios.myrgiotis@sruc.ac.uk

Cairistiona F. E. Topp
Scotland's Rural College, kairsty.topp@sruc.ac.uk

Robert M. Rees
Scotland's Rural College, bob.rees@sruc.ac.uk

Mathew Williams
University of Edinburgh, mat.williams@ed.ac.uk

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

Myrgiotis, Vasileios; Topp, Cairistiona F. E.; Rees, Robert M.; and Williams, Mathew, "Simulating regional-scale soil nitrous oxide emissions in Scotland" (2016). International Congress on Environmental Modelling and Software. 7.
https://scholarsarchive.byu.edu/iemssconference/2016/Stream-B/7

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Simulating regional-scale soil nitrous oxide emissions in Scotland

Vasileios Myrgiotisa, Cairistiona F.E. Toppb, Robert M. Reesc, Mathew Williamsd

a Scotland’s Rural College (SRUC) & University of Edinburgh (vasileios.myrgiotis@sruc.ac.uk)
b Scotland’s Rural College (SRUC) (kairsty.topp@sruc.ac.uk)
c Scotland’s Rural College (SRUC) (bob.rees@sruc.ac.uk)
d University of Edinburgh (mat.williams@ed.ac.uk)

Nitrous oxide (\(N_2O\)) is a major greenhouse gas whose largest anthropogenic source is the addition of nitrogenous fertilisers to cultivated soils. The development and application of mechanistic models of soil biogeochemistry contributes significantly to the effort to understand and quantify those \(N_2O\) fluxes. Soil biogeochemistry models are complex and can be particularly difficult to evaluate because \(N_2O\) measurements are usually sporadic and contain large uncertainties. Therefore, large-scale simulations with such models can be demanding. The majority of model-based studies focus on small spatial scales (i.e. field, catchment) despite the fact that simulations at larger scales are those that offer more applicable and policy-relevant results. In this context, this presentation will provide a picture of \(N_2O\) emissions from the arable soils of Scotland, including an appraisal of the uncertainty around them. The regional estimates are a product of a PhD project that uses a biogeochemical model (Landscape-DNDC) and benefits from extensive field data and detailed soil and crop geo-datasets. The study resulted in a \(N_2O\) emission factor (EF) that is significantly smaller than the generic IPCC EF but is inline with the recently estimated UK-specific EF. The presentation will also provide an overview of the model’s evaluation and calibration that preceded the regional simulations.

\textit{Keywords}: Nitrous oxide; Landscape-DNDC; regional simulations; arable soils; Scotland