Advances in the Spatially Distributed AgES-W Model: Parallel Computation, Java Connection Framework (JCF) Integration, and Streamflow/Nitrogen Dynamics Assessment

James Ascough II
USDA-ARS-PA, Water Management and Systems Research Unit, jim.ascough@ars.usda.gov

Nathan P. Lighthart
Colorado State University, nlighth1@rams.colostate.edu

Holm Kipka
Colorado State University, holm.kipka@colostate.edu

Timothy R. Green
USDA-ARS-PA, Water Management and Systems Research Unit, tim.green@ars.usda.gov

Gregory S. McMaster
USDA-ARS-PA, Water Management and Systems Research Unit, greg.mcmaster@ars.usda.gov

Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference

Part of the Civil Engineering Commons, Data Storage Systems Commons, Environmental Engineering Commons, Hydraulic Engineering Commons, and the Other Civil and Environmental Engineering Commons

https://scholarsarchive.byu.edu/iemssconference/2016/Stream-B/2

This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Presenter/Author Information
James Ascough II, Nathan P. Lighthart, Holm Kipka, Timothy R. Green, Gregory S. McMaster, and Olaf David

This event is available at BYU ScholarsArchive: https://scholarsarchive.byu.edu/iemssconference/2016/Stream-B/2
Advances in the Spatially Distributed AgES-W Model: Parallel Computation, Java Connection Framework (JCF) Integration, and Streamflow/Nitrogen Dynamics Assessment

James C. Ascough II1, Nathan P. Lighthart2, Holm Kipka2, Timothy R. Green1, Gregory S. McMaster1, Olaf David2

1 USDA-ARS-PA, Water Management and Systems Research Unit, Fort Collins, CO 80526 USA (jim.ascough@ars.usda.gov; tim.green@ars.usda.gov; greg.mcmaster@ars.usda.gov)
2 Colorado State University, Dept. of Civil and Environmental Engineering, Fort Collins, CO 80523 USA (nlighth1@rams.colostate.edu; holm.kipka@colostate.edu; odavid@colostate.edu)

Abstract: AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic and water quality (H/WQ) simulation components under the Java Connection Framework (JCF) and the Object Modeling System (OMS) environmental modeling framework. AgES-W is implicitly scalable from field to regional scales, has a unique four-compartment surface-groundwater (vertical/lateral) routing scheme, and has recently been enhanced with various science components and tools for improved prediction of H/WQ response across large gauged and ungauged areas. Science component improvements include both new and enhanced modules for infiltration, water conveyance (e.g., ditches and diversions), conservation practice effects, and water table tracking. Recent AgES-W modeling developments include integration of AgES-W science components under the JCF in order to resolve connectivity issues within the existing model architecture and addition of multiple methods for parallel computation of surface/subsurface processes within AgES-W across spatial land units. Specific objectives of this research study include: 1) assessing the computational performance and scalability of the implemented parallelization methods across a range of CPU utilization (i.e., processor cores/threads), and 2) evaluating the accuracy and applicability of the enhanced AgES-W model for estimating streamflow and nitrogen (N) dynamics for the South Fork Watershed (SFW) in central Iowa, USA. AgES-W model performance for SFW streamflow/N dynamics was assessed using Nash-Sutcliffe efficiency (ENS), root mean square deviation (RMSD), and relative error (PBIAS) statistical evaluation coefficients. Comparisons of simulated and observed daily and average monthly streamflow/N resulted in ENS, RMSD, and PBIAS values that were within the range (or better) of those reported in the literature for other H/WQ models at a similar scale and time step. Comparison of the parallelization approaches showed that each method exhibited trade-offs in thread synchronization cost, added complexity of the AgES-W code, and the “breadth” of parallelism that may be achieved.

Keywords: Hydrologic and water quality modeling; Parallel computing; Streamflow; Nitrogen; Modeling framework; Model evaluation.