Measurement and evaluation of blade passage frequency fluctuations (A)

Cole V. Duke

Scott D. Sommerfeldt
scott_sommerfeldt@byu.edu

See next page for additional authors

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Astrophysics and Astronomy Commons, and the Physics Commons

Original Publication Citation

BYU ScholarsArchive Citation
https://scholarsarchive.byu.edu/facpub/223

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Authors
Cole V. Duke, Scott D. Sommerfeldt, Kent L. Gee, and Connor R. Duke

This peer-reviewed article is available at BYU ScholarsArchive: https://scholarsarchive.byu.edu/facpub/223
Measurement and evaluation of blade passage frequency fluctuations (A)


Issue Date: November 2007

Cole V. Duke, Scott D. Sommerfeldt, Kent L. Gee, and Connor R. Duke
Brigham Young Univ., N281-A ESC, 75 W. 960 N. No. 7 Provo, UT 84602

Abstract
In the active control of tonal noise from cooling fans, one factor that can limit the achievable attenuation is fluctuation of the blade passage frequency in time. Large fluctuations in a short time can hinder the algorithm from converging to the optimal solution. Some fans have steadier speeds than others, which can be due to unsteady driving mechanisms or the physical structure of the fan. Environmental effects, such as back pressure and unsteady blade loading, can also cause the fan speed to fluctuate. The shifting in the blade passage frequency will be measured using a zero-crossing technique to track the frequency of each cycle. Blade passage frequency fluctuations will be presented for various driving mechanisms and environmental conditions. Techniques to minimize frequency shifting will also be discussed.