2008-03-01

Experimental Analysis of a Wideband Adaptive-MIMO Antenna

Michael A. Jensen
ejensen@byu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

Part of the Electrical and Computer Engineering Commons

Original Publication Citation

BYU ScholarsArchive Citation
https://scholarsarchive.byu.edu/facpub/200

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.
Multiple-input multiple-output (MIMO) technology [1], [2] shows considerable promise as an approach for increasing the spectral efficiency of wireless communication. Because of this potential, significant research effort has been devoted to this topic, resulting in remarkably rapid evolution of the technology into emerging commercial standards and products.

As the technology transitions from the research laboratory to commercial products, efforts are focused on finding ways to effectively implement MIMO communication using simple, robust, and inexpensive system components which can fit within constrained volumes. Efforts to reduce the number of required transmit or receive electronic sub-systems (which can be expensive in terms of cost and battery power) have demonstrated that antenna selection algorithms can provide high performance under many circumstances [3], although implementation of this concept requires the addition of high-performance microwave switches and effective compensation techniques for the changing impedance of the driven elements due to coupling with adjacent elements for compact devices.

Recently solutions based on reconfigurable antenna systems have been proposed [4]–[8] which provide power gains comparable to those offered by antenna selection but with a reduced set of transmit or receive electronic chains. This kind of antenna, specifically designed to work in MIMO communication systems, will thus be referred to as “MIMO antennas.” In particular in [8] antenna pattern reconfiguration algorithms have demonstrated that the parasitic configuration works well over the entire frequency band, although improved power reduction can be obtained when the operation bandwidth is limited.

Index Terms—Broadband communication, multiple-input multiple-output (MIMO) systems, parasitic antennas.

I. INTRODUCTION

Experimental Analysis of a Wideband Adaptive-MIMO Antenna

Daniele Pinchera, Jon W. Wallace, Marco Donald Migliore, and Michael A. Jensen

Abstract—An experimental measurement campaign to investigate the wideband performance of an adaptive multiple-input multiple-output (AdAM) antenna consisting of two active and six parasitic antenna elements. The measurements are conducted over a 30 MHz bandwidth at a center frequency of 2.55 GHz and in a variety of locations in an indoor environment. The system uses a traditional two-element array at the transmitter and either a two-element traditional array or the AdAM antenna at the receiver. The results show that compared to the traditional array, the AdAM receive antenna can achieve the same throughput with an average power reduction of 2.7 dB and a maximum power reduction of 7.7 dB. The analysis further shows that the parasitic configuration works well over the entire frequency band, although improved power reduction can be obtained when the operation bandwidth is limited.

Experimental Analysis of a Wideband Adaptive-MIMO Antenna

Daniele Pinchera, Jon W. Wallace, Marco Donald Migliore, and Michael A. Jensen

Abstract—An experimental measurement campaign to investigate the wideband performance of an adaptive multiple-input multiple-output (AdAM) antenna consisting of two active and six parasitic antenna elements. The measurements are conducted over a 30 MHz bandwidth at a center frequency of 2.55 GHz and in a variety of locations in an indoor environment. The system uses a traditional two-element array at the transmitter and either a two-element traditional array or the AdAM antenna at the receiver. The results show that compared to the traditional array, the AdAM receive antenna can achieve the same throughput with an average power reduction of 2.7 dB and a maximum power reduction of 7.7 dB. The analysis further shows that the parasitic configuration works well over the entire frequency band, although improved power reduction can be obtained when the operation bandwidth is limited.

Index Terms—Broadband communication, multiple-input multiple-output (MIMO) systems, parasitic antennas.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology [1], [2] shows considerable promise as an approach for increasing the spectral efficiency of wireless communication. Because of this potential, significant research effort has been devoted to this topic, resulting in remarkably rapid evolution of the technology into emerging commercial standards and products.

As the technology transitions from the research laboratory to commercial products, efforts are focused on finding ways to effectively implement MIMO communication using simple, robust, and inexpensive system components which can fit within constrained volumes. Efforts to reduce the number of required transmit or receive electronic sub-systems (which can be expensive in terms of cost and battery power) have demonstrated that antenna selection algorithms can provide high performance under many circumstances [3], although implementation of this concept requires the addition of high-performance microwave switches and effective compensation techniques for the changing impedance of the driven elements due to coupling with adjacent elements for compact devices.

Recently solutions based on reconfigurable antenna systems have been proposed [4]–[8] which provide power gains comparable to those offered by antenna selection but with a reduced set of transmit or receive electronic chains. This kind of antenna, specifically designed to work in MIMO communication systems, will thus be referred to as “MIMO antennas.” In particular in [8] antenna pattern reconfiguration is achieved by adapting the loads on passive antenna elements adjacent to the driven elements. To date, this adaptive MIMO (AdAM) antenna structure has been analyzed only for a limited set of narrowband measurements.

Manuscript received December 31, 2006; revised November 5, 2007. This work was supported in part by the Italian Ministry of University (MIUR) under a Program for the Development of Research of National Interest (PRIN Grant #2007APSKNA_001).

D. Pinchera and M. D. Migliore are with the DAEIMI, University of Cassino, 03043 Cassino, Italy (e-mail: mdmiglio@unicas.it).

A. Jensen is with ECEN, Brigham Young University, Provo, UT 84602 USA.

J. W. Wallace is with Jacobs University Bremerhaven, 28759 Bremen, Germany. Digital Object Identifier 10.1109/TAP.2008.917008

0018-926X/$25.00 © 2008 IEEE
The goal of this paper is to more carefully explore the potential performance of the AdaM antenna in a set of realistic environments and over wideband operation, i.e., when the channel coherence bandwidth is smaller than the signal bandwidth, leading to a frequency selective channel. The study is accomplished by construction of a candidate AdaM antenna architecture and characterization of its performance in several indoor settings using a wideband MIMO channel sounder.

II. SYSTEM MODELING AND MEASUREMENT

Roughly speaking in an AdaM antenna the switching of the parasitic elements changes the position and the level of the lobes of the radiating patterns, thus changing the MIMO channel matrix. The representation given in [8] allows us to model the MIMO channel matrix $\mathbf{H}(f)$, incorporating the impact of the electromagnetically coupled parasitic elements for a fixed frequency f. To characterize a wideband system, we can sub-divide the band of interest in K smaller sub-bands (similar to what is done in OFDM MIMO systems [9]), so that the system response in each sub-band can be considered constant (“flat”), with the system response determined at the sub-band center frequency f_k. The channel capacity C_k of the deterministic MIMO channel, for the kth sub-band, is then

$$C_k = \sum_{i=1}^{r_k} \log_2 \left(1 + \frac{P_{T} \Sigma_i \alpha_{i,k}}{\sigma_{n,k}^2} \right), \quad [\text{bit/s/Hz}] \quad (1)$$

where P_T is the total transmitted power, Σ_i is the square of the ith singular value [11] of the matrix $\mathbf{H}(f_k)$, r_k is the rank of $\mathbf{H}(f_k)$, $\sigma_{n,k}^2$ is the variance of the additive white Gaussian noise at the receiver in the kth sub-band, and $\alpha_{i,k}$ is the fraction of the total transmitted power P_T allocated to the ith spatial channel of the kth sub-band, chosen according to the waterfilling algorithm [2]. So the overall maximum throughput of the MIMO channel for the wideband system becomes

$$R_{\text{max}} = \Delta f \sum_{k=1}^{K} C_k, \quad [\text{bit/s}] \quad (2)$$

where Δf is the bandwidth of each sub-band.

The singular values depend on the loads on which the passive antennas are terminated. Consequently the channel seen by the active elements depends on the loads. From a communication point of view, the AdaM antenna allows to obtain a set of potential communication channels, among which the most advantageous in terms of channel capacity is chosen. From an electromagnetic point of view, the use of parasitic antennas terminated on controllable loads allows a larger set of possible patterns compared to a classic MIMO antenna (without passive elements) giving further degrees of freedom in the maximization of the bit rate. The beamforming can be considered as a spatial processing of the electromagnetic signal, performed before the classic MIMO signal data processing. It involves complex interactions of the signals in the close near field of the active antennas. Consequently, generally the pattern of the antenna are very complex, since they are non-linear functions close near field of the active antennas. Consequently, generally the patterns, thus changing the MIMO channel matrix.

Experimental assessment of the potential performance of a MIMO system equipped with wideband AdaM antennas requires a suite of sophisticated MIMO channel measurements in which the parasitic loads are switched over all possible combinations. In this work, this is accomplished using simple modifications to a MIMO channel sounder which typically uses switches to connect different antennas to a single transmitter or receiver. The complete description of the channel sounder and of its calibration can be found in [12], [13].

To this sounder to characterize the channel when the AdaM antenna is used, two of the switch control signals are used to sequentially connect the active antenna elements to the RF electronics. The remaining switch control signals are used to cycle through all possible combinations of switch states on the AdaM parasitic elements for each connected active antenna. In this way, a (wideband) channel matrix is obtained for each possible parasitic load combination, allowing determination of the optimal switch combination from the perspective of capacity.

III. EXPERIMENTAL RESULTS

The system is configured by attaching the traditional two-element monopole array to the transmitter (TX) and either an identical traditional monopole array or the AdaM array at the receiver (RX). The two inner and six outer wires represent the active and parasitic elements, respectively.

The reflection coefficients of the monopoles in absence of the other monopoles is lower than -20 dB at the center frequency. The reflection coefficients of the two active monopoles of the AdaM antenna depends on the load configurations. However, in our approach the channel capacity takes into account also the losses due to the mismatch of the active antennas.

The controllable terminations attached to the parasitic elements are based on a Philips BAP63 PIN diode. Each switch accepts two different driving voltage states: 0 V (OFF state) or 5 V (ON state). A vector network analyzer was used to measure the impedance of each switch in both states, with the mean impedance values at the center frequency being $Z_{\text{OFF}} = 61.3 + j13.7$ Ω and $Z_{\text{ON}} = 12.1 + j2.9$ Ω. These PIN diode switches can change states in less than 2 ms.

The reflection coefficients of the monopoles in absence of the other monopoles is lower than -20 dB at the center frequency. The reflection coefficients of the two active monopoles of the AdaM antenna depends on the load configurations. However, in our approach the channel capacity takes into account also the losses due to the mismatch of the active antennas.

To this sounder to characterize the channel when the AdaM antenna is used, two of the switch control signals are used to sequentially connect the active antenna elements to the RF electronics. The remaining switch control signals are used to cycle through all possible combinations of switch states on the AdaM parasitic elements for each connected active antenna. In this way, a (wideband) channel matrix is obtained for each possible parasitic load combination, allowing determination of the optimal switch combination from the perspective of capacity.

Fig. 1. Parasitic MIMO antenna: dark gray—active elements; light gray—parasitic elements.
measurement of the wideband 2×2 MIMO channel uses a multitone signal consisting of 30 tones at 1 MHz spacing with a center frequency of 2.55 GHz. This frequency spacing is sufficient given that the measured correlation bandwidth is approximately 5 MHz. Each measurement therefore produces 30 2×2 channel matrices (one for each tone).

In order to estimate the maximum capacity obtainable on the measured channel we use water-filling [2] to determine the power allocation coefficients $\alpha_{i,k}$ which indicate the fraction of the total transmit power P_T assigned to the ith spatial channel in the kth frequency bin ($1 \leq i \leq 2$ and $1 \leq k \leq 30$). This computation is accomplished by applying the water-filling algorithm to the 60×60 block diagonal matrix formed from the 30 2×2 channel matrices. Effectively, the algorithm considers all available space-frequency sub-channels as power is allocated to maximize the achievable system mutual information. It is important to emphasize that the capacity computed in this fashion is appropriate for a single parasitic state, and therefore a single channel snapshot requires 64 such measurements (six parasitic elements each with two possible states). Measurement of this entire data set requires less than 20 ms of time on the channel probing system. The stability with two possible states). Measurement of this entire data set requires 64 such measurements (six parasitic elements each with two possible states). Measurement of this entire data set requires less than 20 ms of time on the channel probing system. The stability with two possible states). Measurement of this entire data set requires 64 such measurements (six parasitic elements each with two possible states). Measurement of this entire data set requires less than 20 ms of time on the channel probing system. The stability with two possible states).

Once we have acquired the channel matrices for the reference antenna and the 64 different termination combinations for the AdaM antenna, we must effectively compare the relative performance of these different systems. To do this, we compute the value of $P_T/\sigma_{n_k}^2$ in (1) required to achieve a value of $R_{max} = 300$ Mbit/s in (2) for each configuration, where we have assumed that the noise power is equal across the bandwidth so that $\sigma_{n_k} = \sigma_n$ for all k. The value of this ratio for each AdaM configuration relative to that for the reference antenna system is then used as a metric for evaluation. If a particular configuration can achieve the specified rate with lower transmit power P_T, then this is an effective gain to the system. Numerically, we evaluate the ratio

$$\Delta P_T = \frac{(P_T/\sigma_n^2)_{\text{AdaM}}}{(P_T/\sigma_n^2)_{\text{Reference}}}$$

(3)

where the subscripts “AdaM” and “reference” indicate the antenna configuration used. It is necessary to underline that to achieve a system throughput close to the waterfilling channel capacity the transmitter needs to know the state of the channel, and the realization of a proper feedback from the receiver to transmitter that can be an issue; anyway, since in this paper we are interested only in benchmarking the performances of the wideband AdaM antenna we will neglect this issue.

The experimental campaign consists of measurements taken in the Clyde Engineering Building on the Brigham Young University campus. The measurements are grouped into sweeps obtained by moving the receiver in one-inch steps (about $\lambda/5$ which is approximately equal to the measured correlation distance) along a straight line while the transmitter remains stationary. Fig. 2 shows the plan for the fifth floor of the building which is the site for the majority of the measurements, where the positions for the transmitter and receiver for the ith measurement sweep are designated as TX$_i$ and RX$_i$, respectively. Sweep 1 consists of 18 measurements, while each of the remaining 7 sweeps consists of 68 measurements. It should be noted that for sweep 8, the receiver is placed on the fourth floor of the building at the relative position shown in Fig. 2.

A. Power Reduction

Fig. 3 plots the ratio ΔP_T defined in (3) for all measured channels. The average power reduction obtained using the AdaM antenna is 2.7 dB. This is significant, as it indicates that the optimally loaded parasitic elements enable communication at the same rate with almost half the power. When the receiver is placed on a terrace (sweep 7), there are no scatterers in the vicinity of the receiver resulting in reduced angle spread at this location. Therefore, the AdaM antenna can have a significant impact on the performance (largest power reduction). When the transmitter and receiver are on different floors (sweep 8), a condition leading to rich multipath, the AdaM antenna has little impact on performance.

Fig. 4 shows a histogram of the data shown Fig. 3 along with the best fitting Gaussian distribution (mean -2.7, standard deviation 1.4).

B. Space-Frequency Sub-Channels

Examination of the singular values of the full 60×60 channel matrix provides some insight into the beneficial impact of the AdaM antenna system. Fig. 5 plots these singular values for a channel that achieves the “average” power reduction of 2.7 dB both with the AdaM (using the best loading combination) and reference receive antennas. The 60 singular values represent the two singular values (corresponding to spatial channels) for the channel matrix at each of the 30 frequencies (frequency channels). It is worth noting that in scenarios with limited multipath angular spread, the second (smaller) spatial singular value of each channel matrix may be smaller than the first singular value of all other matrices. In this case, there will be a discontinuity between the 30th and 31st singular values, as seen in Fig. 5.

The results in Fig. 5 show that the AdaM RX antenna increases the singular values in general which accounts for part of the power reduc-
Fig. 4. The distribution of the ratio $(P_T/\sigma_n)^{\text{AdaM}}/(P_T/\sigma_n)^{\text{active}}$ to obtain the same target capacity.

Fig. 5. Singular values for a channel matrix that achieves the “average” power reduction.

Fig. 6. Power allocation coefficients for the “average” case.

Fig. 7. Power allocation coefficients for the channel matrix that achieves the “worst” power reduction.

Fig. 8. Power allocation coefficients for the channel matrix that achieves the “worst” power reduction enabled by the parasitic elements is incapable of improving on the performance, presumably because the space-frequency response of the reference array is already well suited for sampling the incident multipath field. However such cases are rare in this campaign, with the AdaM antenna requiring more power than the reference antenna in only 6 out of 494 measured channels.

In contrast, Fig. 8 shows the power allocation coefficients for the channel in which the AdaM antenna gives the largest power reduction (7.7 dB). In this case, the reference antenna only provides one strong spatial channel for each frequency while the AdaM antenna enables the effective use of both spatial channels over the entire band. We emphasize that this case occurs when the receiver is on an outside terrace which is well removed from most of the scatterers in the propagation environment, resulting in a small angular spread of the multipath components incident on the receiver. The AdaM antenna therefore appears able to adapt the array response to effectively sample the incident field and achieve much better performance than can be obtained by the reference structure. It is important to emphasize that the larger aperture and two-dimensional array geometry of the AdaM antenna gives it a beamforming advantage over the reference array which is particularly effective for channels with narrow angular spread such as this one. In fact, detailed numerical studies reveal that the performance gained by the larger aperture alone is negligible for most environments with wider angular spread and that the bulk of the benefit generally comes from the adaptivity of the array. Since such environments are rare in the indoor
C. Bandwidth Considerations

It is important to emphasize that the optimal parasitic loading achieves a power reduction by improving the spatial and frequency response of the antenna. For example, careful examination of the singular values (or power allocation coefficients) discussed in Section III-B shows that the optimal load achieves an equalization of the singular values in frequency (i.e., singular values remain more constant over the operation bandwidth). It is intuitive, however, that this effect will degrade as the operational bandwidth increases.

To study this effect, consider Fig. 9 which shows the power reduction averaged over all measurements achieved by the AdaM antenna relative to the reference antenna as a function of the operation bandwidth. When the bandwidth is narrow, the beamforming achieved by the optimal loading of the AdaM antenna achieves a power reduction of 3.5 dB. As the bandwidth is increased, the loading may not be as effective over the entire band, resulting in the observed decrease in power reduction. So this result suggests that the use of loads whose frequency response can be modified could improve the performances of this kind of antennas when the bandwidth is large.

It is important to point out, however, that the degradation in power reduction is only 0.8 dB as the bandwidth is increased from 1 MHz to 30 MHz, indicating that the optimal loading works well over reasonable operation bandwidths. This is an important consideration for practical implementation of AdaM antennas.

IV. Conclusion

This paper reports on the experimental investigation of the wideband performance of AdaM antennas in a wideband MIMO communication system. The measurement campaign uses a 2×2 MIMO system with traditional arrays at the transmitter and either a traditional (reference) or AdaM array at the receiver. The data consists of measurements taken in a variety of locations in an indoor environment. Summarizing the experimental results, for a 1 MHz channel bandwidth, the AdaM antenna can achieve the same rate as the reference antenna with an average transmit power reduction of 3.5 dB. As the bandwidth is increased to 30 MHz, the AdaM antenna still achieves an average transmit power reduction of 2.7 dB. The study also show that in environments characterized by multipaths with narrow angle spread, the AdaM antenna provides particular benefit. This is due to the fact that the beamforming provided by the parasitic elements’ switching acts as a spatial processing performed before the terminals of the active elements of the antenna, and hence modifies the communication channel itself.

We emphasize that these results have been obtained without optimization of the antenna and switch structure, and therefore further improvement may be possible through an improved antenna design. It is also noteworthy that in a frequency selective channel, the AdaM antenna adapts both its spatial and frequency response to optimize performance, in contrast to operation in a frequency flat channel where only the spatial response is important. This observation suggests that the use of loads with a controllable frequency behavior should result in improved performance due to increase flexibility in adapting the overall array frequency response. Finally, since this study has considered only an AdaM antenna at one end of the link, the results in [8] suggest that additional performance gain can be achieved through the use of AdaM arrays at both transmit and receive.

REFERENCES

A Bandwidth Estimation Approach for the Asymptotic Waveform Evaluation Technique

Zhen Peng and Xin-Qing Sheng

Abstract—The asymptotic waveform evaluation (AWE) technique has been widely used for handling the fast parameter sweep. However, how to determine the sweep bandwidth is still an open question. This work proposes an efficient and flexible bandwidth estimation approach. This approach also naturally leads to an efficient multipoint AWE technique. The validity of the proposed approach is verified by numerical experiments on the AWE-incorporated hybrid finite element/boundary integral (FE/BI) method for scattering problem. Numerical experiments show that this approach can greatly improve the efficiency and practical capability of the AWE technique.

Index Terms—Asymptotic waveform evaluation (AWE), bandwidth estimation, rational approximation.

I. INTRODUCTION

In many practical applications in electromagnetic simulation, it is desired to pursue a wide region of information by varying one or two parameters. For example, the interest often includes a wide range of frequencies for microwave imaging, it is necessary to determine various cross sections over a wide range of both frequencies and incident angles for imaging of the targets. These problems are usually categorized as the fast parameter sweep problem.

Fig. 1. Conducting brick target with an empty cavity.

The previous works show that the rational approximation technique is a kind of efficient way of handling the above problem. This technique first constructs a rational function of the desired parameter, and then utilizes the rational function to approximate the parameter over a region. There are different ways to construct the rational function. Among them, the asymptotic waveform evaluation (AWE) is a general and efficient one, and has been widely used. This technique was originally developed for high-speed circuit analysis [1], and was applied to the finite element and finite difference analysis of electromagnetic problems or how to achieve a wider bandwidth of the available expansion C band. There is a very important issue needed to be investigated, which is how to determine the bandwidth of the available expansion band for a desired accuracy. A bandwidth estimation approach was presented in [9] and successfully applied to the FEM fast frequency sweep. In this paper, a different and flexible approach is proposed for the efficient and accurate estimation of the bandwidth.

In this paper, the AWE-incorporated FE/BI method is first presented for the fast frequency and angle sweep of the radar cross section (RCS). Then a flexible bandwidth estimation approach is proposed for the AWE technique. Finally, Numerical experiments demonstrate the validity of the bandwidth estimation for the AWE-incorporated FE/BI method.

II. APPLICATION OF AWE TO HYBRID FE/BI METHOD

It is known that the problem of scattering by a composite object can be discretized by using hybrid FE/BI method [10] as

\[
\begin{bmatrix}
K_{t,t} & K_{t,s} & 0 \\
K_{s,t} & K_{s,s} & B \\
0 & P & Q
\end{bmatrix}
\begin{bmatrix}
E_t \\
E_s \\
H_s
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
b
\end{bmatrix}
\]

(1)

where \(K_{t,t}\), \(K_{s,s}\), \(K_{t,s}\), \(K_{s,t}\), \(B\) are sparse MoM matrices, \(P\) and \(Q\) are dense MoM matrices, and \(K_{t,s}\), \(K_{s,t}\) are usually symmetric, \(B\) is skew symmetric. Rewrite (1) as

\[
Z(k)I(k; \theta, \phi) = V(k; \theta, \phi)
\]

(2)